PT - JOURNAL ARTICLE AU - Paolini, Léa AU - Adam, Clément AU - Beauvillain, Céline AU - Preisser, Laurence AU - Blanchard, Simon AU - Pignon, Pascale AU - Seegers, Valérie AU - Chevalier, Louise-Marie AU - Campone, Mario AU - Wernert, Romuald AU - Verrielle, Véronique AU - Raro, Pedro AU - Ifrah, Norbert AU - Lavoué, Vincent AU - Descamps, Philippe AU - Morel, Alain AU - Catros, Véronique AU - Tcherkez, Guillaume AU - Lenaers, Guy AU - Bocca, Cinzia AU - Kouassi Nzoughet, Judith AU - Procaccio, Vincent AU - Delneste, Yves AU - Jeannin, Pascale TI - Lactic Acidosis Together with GM-CSF and M-CSF Induces Human Macrophages toward an Inflammatory Protumor Phenotype AID - 10.1158/2326-6066.CIR-18-0749 DP - 2020 Mar 01 TA - Cancer Immunology Research PG - 383--395 VI - 8 IP - 3 4099 - http://cancerimmunolres.aacrjournals.org/content/8/3/383.short 4100 - http://cancerimmunolres.aacrjournals.org/content/8/3/383.full SO - Cancer Immunol Res2020 Mar 01; 8 AB - In established tumors, tumor-associated macrophages (TAM) orchestrate nonresolving cancer-related inflammation and produce mediators favoring tumor growth, metastasis, and angiogenesis. However, the factors conferring inflammatory and protumor properties on human macrophages remain largely unknown. Most solid tumors have high lactate content. We therefore analyzed the impact of lactate on human monocyte differentiation. We report that prolonged lactic acidosis induces the differentiation of monocytes into macrophages with a phenotype including protumor and inflammatory characteristics. These cells produce tumor growth factors, inflammatory cytokines, and chemokines as well as low amounts of IL10. These effects of lactate require its metabolism and are associated with hypoxia-inducible factor-1α stabilization. The expression of some lactate-induced genes is dependent on autocrine M-CSF consumption. Finally, TAMs with protumor and inflammatory characteristics (VEGFhigh CXCL8+ IL1β+) are found in solid ovarian tumors. These results show that tumor-derived lactate links the protumor features of TAMs with their inflammatory properties. Treatments that reduce tumor glycolysis or tumor-associated acidosis may help combat cancer.