Combining Local Immunotoxins Targeting Mesothelin with CTLA-4 Blockade
Synergistically Eradicates Murine Cancer by Promoting Anti-Cancer Immunity

Yasmin Leshem, James O'Brien, Xiufen Liu, Tapan K. Bera, Masaki Terabe, Jay A Berzofsky,
Birgit Bossenmaier, Gerhard Niederfellner, Chin-Hsien Tai, Yoram Reiter, and Ira Pastan

SUPPLEMENTARY INFORMATION
Supplementary figure S1

A

B

C

Description of DNA constructs. A-B. Diagram of the DNA construct used to generate 66C14-M cell line (A) and its sequence (B). C. Diagram of the DNA construct used to generate human mesothelin transgenic mice.
Distribution of intra-tumoral injected trypan blue. Five 66C14 tumors (72 to 117mm3) were injected with 30 µl trypan blue. One hour after the injection, tumors were harvested, cut to half and photographed.
Combination of intra-tumoral immunotoxins with anti-CTLA-4 is well tolerated by the mice. Shown are average body weights measured over the course of treatment with 25µg/dose anti-CTLA-4 and (A) 5µg /dose SS1P or (B) 30µg /dose LMB-100
Supplementary figure S4

Anti-tumor effect of anti-CTLA-4 and LMB-100 depends on CD8+ cells. A-B Individual growth curves of 66C14-M tumors treated with anti-CTLA-4 (thin arrows), LMB-100 (thick arrows) and (A) 200 µg or (B) 100 µg anti-CD8 antibodies. (C) shows pooled data from two experiments. The number of mice in complete remission and the total mice per group is shown in parentheses.
Supplementary figure S5

High dose of SS1P is needed for induction of complete remission. A-B. Individual growth curves of 66C14-M tumors treated with (A) anti-CTLA-4 (thin arrows) and PBS (thick arrows), (B) anti-CTLA-4 (thin arrows) and 0.5 µg SS1P (thick arrows) or (C) anti-CTLA-4 (thin arrows) and 5 µg SS1P (thick arrows). (D) Survival of mice described in (A-C). * P<0.05, ** P<0.01.
Supplementary figure S6A

Anti-tumor effect of an immunotoxin targeting human CD22. Individual growth curves of 66C14-M tumors treated with (A) vehicle alone (thick arrows), (B) 10 µg HA22 alone (thick arrows), (C) vehicle and anti-CTLA-4 (thin arrows) or (D) 10 µg HA22 and anti-CTLA-4. (E). Survival of mice described in (A-D). The number of mice in CR and total mice per group is shown in parentheses.

S6B

Combination of SS1P with anti-CTLA-4 lead to tumor regression of 66C14 tumors not expressing MSLN. Individual growth curves of (A) 66C14-M tumors or (B) 66C14 parental tumors treated identically with SS1P (10 µg, thick arrows) and anti-CTLA-4 (thin arrows). The number of mice in CR and total mice per group is shown in parentheses. The graph shows a representative experiment out of two done.
Intra-tumors injection of paclitaxel does not improve the anti-tumor activity of anti-CTLA-4. Individual growth curves of 66C14-M tumors treated with 25µg anti-CTLA-4 (thin arrows) and (A) vehicle (thick arrows) or (B) 30 µg paclitaxel (thick arrows). (C). Survival of mice described in (A-B). The graph shows a representative experiment out of two done.
Combination of RIT and anti-CTLA-4 and anti-CTLA-4 induces long-term anti-tumor immunity. Mice that reached complete remission after RIT and anti-CTLA-4 treatment received an injection with tumor cells 45 days after complete remission using either 1×10^6 66C14-M cells or 1×10^6 66C14 parental cells. The number of mice that were challenged and the number of mice rejecting the new cells are indicated.

Table S1
Combination of RIT and anti-CTLA-4 induces long-term anti-tumor immunity

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>66C14 Rejected/Challenged</th>
<th>66C14-M Rejected/Challenged</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 μg/dose aCTLA-4 and SS1P</td>
<td>4/5</td>
<td>6/6</td>
</tr>
<tr>
<td>50 μg/dose aCTLA-4 and SS1P</td>
<td>5/5</td>
<td></td>
</tr>
<tr>
<td>25 μg/dose aCTLA-4 and SS1P</td>
<td>14/15</td>
<td></td>
</tr>
<tr>
<td>25 μg/dose aCTLA-4 and LMB-100</td>
<td>8/8</td>
<td></td>
</tr>
<tr>
<td>25 μg/dose aCTLA-4 and LMB-100</td>
<td>5/5</td>
<td></td>
</tr>
<tr>
<td>% mice rejecting the second cell challenge</td>
<td>98%</td>
<td>100%</td>
</tr>
</tbody>
</table>