A2AR Antagonism with CPI-444 Induces Antitumor Responses and Augments Efficacy to Anti–PD-L1 and Anti–CTLA-4 in Preclinical Models

Authors
Stephen B. Willingham¹*, Po Y. Ho¹, Andrew Hotson¹, Craig Hill¹, Emily C. Piccione¹, Jessica Hsieh¹, Liang Liu¹, Joseph J. Buggy¹, Ian McCaffery¹, and Richard A. Miller¹

Affiliations:
¹Corvus Pharmaceuticals, Burlingame, CA 94010, USA

*To whom correspondence should be addressed: Stephen Willingham, swillingham@corvuspharma.com, Corvus Pharmaceuticals, 863 Mitten Road, Suite 102, Burlingame CA, 94010. Phone: 650-900-4527, Fax: 844-463-2039

Running Title:
A2AR antagonism with CPI-444 stimulates antitumor immunity

Keywords:
Immunotherapy, adenosine, A2AR, hypoxia, microenvironment

Conflict of Interest Statement:
Authors are employees and shareholders of Corvus Pharmaceuticals. Select authors are inventors on patents owned by Corvus Pharmaceuticals.

Funding:

Word Counts: Abstract 224; Body 4729
Figures: 7 figures, 4 supplementary figures, 4 supplementary tables
ABSTRACT

Adenosine signaling through A2A receptors (A2AR) expressed on immune cells suppresses antitumor immunity. CPI-444 is a potent, selective, oral A2AR antagonist. Blockade of A2AR with CPI-444 restored T-cell signaling, IL2, and IFNγ production that were suppressed by adenosine analogs in vitro. CPI-444 treatment led to dose-dependent inhibition of tumor growth in multiple syngeneic mouse tumor models. Concentrations of extracellular adenosine in the tumor microenvironment, measured using microdialysis, were approximately 100 -150 nM and were higher than corresponding subcutaneous tissue. Combining CPI-444 with anti–PD-L1 or anti–CTLA-4 treatment eliminated tumors in up to 90% of treated mice, including restoration of immune responses in models that incompletely responded to anti–PD-L1 or anti–CTLA-4 monotherapy. Tumor growth was fully inhibited when mice with cleared tumors were later re-challenged, indicating that CPI-444 induced systemic antitumor immune memory. CD8⁺ T-cell depletion abrogated the efficacy of CPI-444 with and without anti–PD-L1 treatment, demonstrating a role for CD8⁺ T cells in mediating primary and secondary immune responses. The antitumor efficacy of CPI-444 with and without anti–PD-L1 was associated with increased T-cell activation, a compensatory increase in CD73 expression, and induction of a Th1 gene expression signature consistent with immune activation. These results suggest a broad role for adenosine-mediated immunosuppression in tumors and justify the further evaluation of CPI-444 as a therapeutic agent in patients with solid tumors.

INTRODUCTION

Advances in the immunotherapy of cancer have produced complete, durable antitumor immunity in a subset of patients. Efficacy is limited in many patients by factors within the tumor microenvironment (TME) that inhibit immune cell infiltration and/or lead to suppressed antitumor immune responses (1). Extracellular adenosine is normally produced in response to such stimuli as infection or ischemia to restrain immune responses and protect host tissues from
excessive damage (2-4). Emerging evidence suggests tumors exploit this inhibitory mechanism by generating adenosine in the TME to create an immunosuppressive niche that promotes tumor growth and metastasis (2, 5-8). Accordingly, adenosine signaling through adenosine receptors expressed on immune cells has been shown to suppress antitumor immunity and limit the efficacy of immunotherapy, chemotherapy, adoptive cell transfer therapies, and vaccines in preclinical models (4, 9, 10). Prior investigations have also revealed the critical role of adenosine in mediating resistance to chemotherapy and poor overall survival in patients with triple negative breast cancer (10).

Adenosine can be generated in the TME by multiple mechanisms, including the sequential action of the ecto-nucleotidases CD39 and CD73. The coordinated activity of these enzymes converts ATP to AMP and finally to adenosine. While normal physiological concentrations of adenosine are low, hypoxic conditions within the TME induce HIF-1α-dependent expression of the adenosinergic pathway (11-15). Adenosine may also be generated by infiltrating immune and stromal cells, including CD39^{+}CD73^{+} regulatory T cells that convert ATP released from apoptotic cells to adenosine and further suppress antitumor immunity (16-18). Less common methods of generating or preserving extracellular adenosine in the TME include the release of intracellular adenosine from apoptotic cells, equilibrative and concentrative nucleotide transporters, direct generation by alkaline phosphatases, or downregulation of adenosine deaminase and its cofactor CD26 (19).

Extracellular adenosine exerts an immunosuppressive effect by signaling through the G_{s}-coupled A2A and A2B adenosine receptors (A2AR and A2BR) (20). A2AR is the high affinity adenosine receptor and appears to have the widest prevalence across immune cells within both the innate and adaptive systems (21). Previous studies have shown A2AR signaling inhibits the effector function of multiple immune subsets, including T cells and NK cells (13, 22-25). Genetic deletion of A2AR and synthetic A2AR antagonists have been reported to counteract adenosine immunosuppression and restore antitumor immunity (13, 26-32). Adenosine signaling through A2AR on tumor-infiltrating T cells may be a particularly important mechanism by which tumors escape immune destruction (13). Consequently, the therapeutic efficacy of A2AR antagonists may be maximized in “hot” tumors characterized by infiltrating tumor-reactive T cells that are otherwise rendered impotent by adenosine in the TME (33). Adenosine signaling through A2AR and A2BR also promotes tumor growth by facilitating angiogenesis through...
VEGF production (13, 34, 35). Adenosine antagonists may, therefore, not only restore antitumor immune responses, but also inhibit tumor growth by impeding adenosine-mediated neovascularization (13).

Here, we describe the antitumor immune modulating effects of CPI-444, an oral antagonist of A2AR. The potency and selectivity of CPI-444 was characterized by radioligand binding and cAMP inhibition assays. CPI-444 was effective at limiting tumor growth and extending survival in several syngeneic mouse tumor models, as both a single agent and in combination with anti–PD-L1 and anti–CTLA-4. These results suggest a broad role for adenosine-mediated immunosuppression in tumors and justify the further evaluation of CPI-444 as a therapeutic agent in patients with solid tumors.

MATERIALS & METHODS

cAMP in primary human T cells

Fresh human PBMC were purchased from AllCells (Alameda, CA, USA). T cells were isolated by negative selection with Dynabeads Untouched Human T cells kit (Life Technologies, Cat. No. 11344D) according to manufacturer’s instructions. Purified T cells were cultured in DMEM + 10% FBS + 1%Pen/Strep with Dynabeads Human T-Activator CD3/CD28 (Life Technologies). Forty-eight hours after seeding, cells were triturated and Dynabeads were removed using magnetic selection. Cells were returned to culture for an additional twenty-four hours prior to assay in order to achieve low baseline cAMP. NECA (5′-(N-Ethylcarboxamido)adenosine, Tocris, Cat. No. 1691, 10⁻⁵ to 10⁻⁹ M final concentration) and CPI-444 (Corvus Pharmaceuticals, 1 μM final concentration) were prepared in assay buffer (HBSS containing 5mM HEPES, 0.1% BSA, 10uM rolipram, pH adjusted to 7.4 with 0.5M NaOH) at 4x final concentration. 2.5ul NECA and 2.5ul CPI-444 were added to each well of a white 384 well plate prior to addition of cells. T cells were washed one time in assay buffer and resuspended at 1x10⁶ cells/ml in assay buffer. cAMP was measured using the LANCE Ultra cAMP kit (PerkinElmer, Cat. No. TRF0262). Ulight anti-cAMP antibody was added to the cell suspension at 1:150. 5ul cell suspension was added to each well of a white 384 well plate containing agonist and antagonist. Plates were centrifuged for 30 second at 500 x g to collect cells and drug treatments at the bottom of the wells prior to incubation at room temperature for 10 minutes. 2X Eu-cAMP tracer
solution was prepared in detection buffer provided with the LANCE Ultra cAMP kit. 10ul of 2X Eu-cAMP tracer was added to each well and plates were centrifuged for 30 second at 500 x g to collect volumes into the bottom of the well. Plates were incubated for 3 hours at room temperature protected from light prior to evaluation of TR-FRET signal. TR-FRET was measured with the EnVision MultiLabel reader system (Perkin Elmer). A standard curve was generated by preparing serial dilutions of cAMP standard provided with the LANCE Ultra cAMP kit. TR-FRET signal (665nm) was plotted as a function of cAMP concentration. Concentrations of cAMP for experimental values were interpolated from the standard curve.

cAMP Assay

Assays were performed with the Lance cAMP immunoassay kit (PerkinElmer, Cat. No. AD0263) using 1.5 nM NECA at Pharmaron. Normalized data from 10 independent experiments were fitted by non-linear regression using GraphPad Prism.

CPI-444 Radioligand Binding

The ability of CPI-444 to displace radioligand binding from the four identified adenosine receptor subtypes (A1, A2A, A2B, and A3) was tested in CHO-K1(A1, A3) or HEK293 (A2A, A2B) cells expressing human recombinant receptors. Cell membranes were incubated for 1.5 hours at 22°C with \[^{3}H\]-CGS-21680 (20 nM, 30 Ci/mmol) in 50 mM trishydroxymethylaminomethane (Tris)-HCl (pH 7.5) (Sigma Aldrich) containing 10 mM MgCl\(_2\) (Sigma Aldrich) and adenosine deaminase (0.1 IU/mL, Sigma Aldrich). Non-specific binding was determined with 300 µM N6-cyclohexyladenosine (Sigma Aldrich). CPI-444 was tested at 11 duplicate concentrations for the adenosine A1 and A2A assays between 0.1 nM and 10 µM; and for adenosine A2B and A3 assays between 0.3 nM and 100 µM. Radioactivity remaining on the filters was determined by liquid scintillation spectrophotometry. Appropriate concentration ranges and radioligands used are summarized in Supplementary Table S1. The IC\(_{50}\) (concentration causing half-maximal inhibition of radioligand binding) was estimated by fitting a logistical equation to the observed concentration-response curves.

Inhibition of phosphorylated (p)CREB Signaling
Fresh human PBMCs were purchased from AllCells (Alameda, CA, USA). Cells were cultured at a density of 10^7 cells/mL in RPMI-1640 plus 10% FBS for the duration of the experiment. 100 µL of cells were added per well (106 cells total). CPI-444 (1 µM), control A2AR antagonist ZM 241385 (1 µM, Tocris, Cat. No. 1036), or DMSO vehicle control was added to each well of a 2.0 mL deep well polypropylene plate (Thermo Scientific Cat. No. 278743 or Corning P-DW-20-C), and cells were cultured for 1 hour at 37°C. NECA (1 µM) was then added and cells were incubated for 1 hour at 37°C. Following stimulation, cells were fixed with 1.6% paraformaldehyde (Electron Microscopy Sciences, Cat. No. 15710) for 10 minutes at 37°C. Cells were centrifuged 5 minutes at 1,000 x g and, following aspiration, were resuspended in 1 mL cold methanol and stored at -80°C for 1 day to 1 week. Cells were pelleted (1,000 x g for 5 minutes), washed twice with 1 mL of PBS (Life Technologies) + 1% BSA (Sigma Aldrich, Cat. No. A2153) + 0.1% Sodium Azide (Sigma Aldrich, Cat. No. S2002), and then 100 µL of the residual volume of cells was stained with an antibody cocktail containing anti-CD14 BV421 (Biolegend, Cat. No. 301830, 1 µl), anti-CD3 FITC (BD Biosciences, Cat. No. 561807, 1.25 µl), anti-CD20 PE (BD Biosciences, Cat. No. 561174, 1.25 µl), anti-CD4 APC-Cy7 (BD Biosciences, Cat. No. 561839, 0.6 µl), anti-cPARP A700 (BD Biosciences, Cat. No. 560640, 0.5 µl), anti-pCREB AF647 (Cell Signaling Technology, Cat. No. 14001, 1 µl) for 1 hour at room temperature in the dark. Cells were then washed twice with FACS buffer and acquired on a flow cytometer (Sony Cell Sorter SH800). Data was analyzed using FlowJo version 9. The reported CREB phosphorylation in each condition is normalized to the level in unstimulated cells (mean fluorescent intensity in stimulated condition ÷ mean fluorescent intensity in unstimulated condition).

Inhibition of phosphorylated (p)ERK Signaling

PBMCs were purchased from AllCells and either used fresh or cryopreserved for future use. Fresh PBMCs were cultured at a density of 10^7 cells/mL, and cryopreserved cells were cultured at 2×10^6 cells/mL in RPMI plus 10% FBS for the duration of the experiment. Cryopreserved cells were gently thawed at 37°C, and then live cells were separated by overlaying 10 mL of cells on 4 mL Ficoll-Paque (GE Heathcare, 17-5442-02), spinning at 400 $x \ g$ for 30 minutes and...
collecting the cells at the interphase. 100 μL of cells were added per well. CPI-444 (1 μM), ZM 241385 (1 μM), or DMSO vehicle control was added to each well of a deep-well plate, and cells were cultured for 1 hour at 37°C. NECA (1 μM) was then added to appropriate wells, and cells were cultured for 45 minutes at 37°C. Biotinylated antibodies against anti-CD3 and anti-CD28 antibodies (3 μg/mL) were added to stimulate the cells for 13 minutes. The antibodies were crosslinked with avidin (50 μg/mL) for 2 minutes. Following stimulation, cells were fixed with 1.6% PFA for 10 minutes at 37°C. Cells were spun 5 minutes at 1,000 x g and, following aspiration, were resuspended in 1 mL cold methanol and stored at -80°C for 1 day to 1 week. Cells were spun out of methanol (1,000 x g for 5 minutes), washed twice with 1 mL of FACS buffer, and then 100 μL of residual volume of cells was stained with an antibody cocktail containing antibodies to CD14 (Biolegend, Cat. No. 301830), CD3 (BD Biosciences, Cat. No. 561807), CD8 (BD Biosciences, Cat. No. 555367), CD4 (BD Biosciences Cat. No. 560649), cPARP (BD Biosciences, Cat. No. 560640), and pERK (Cell Signaling Technology, Cat. No. 13148S) for 1 hour at room temperature in the dark. Cells were then washed twice with FACS buffer and acquired on the flow cytometer (Sony Cell Sorter SH800). To quantify ERK phosphorylation, the percentage of T cells staining positive for phospho-ERK was determined by using the unstimulated condition to guide the gates for positivity.

IFNγ and IL2 analysis of human PBMCs

Buffy coat samples from healthy donors were purchased from the Stanford Blood Center. PBMCs were isolated using Histopaque-1077 (Sigma-Aldrich, Cat. No. 107771) according to standard protocols. PBMCs were washed in autoMACS Rinsing Solution (Miltenyi, Cat. No. 130-091-222) and resuspended in DMEM (Thermo Fisher Scientific, Cat. No. 11965-118) containing 10% human serum (Sigma-Aldrich, Cat. No. H4522). 500,000 cells were incubated with 0.1 μm, 1 μm or 10 μm NECA or 0.1 μm, 1 μm or 10 μm CPI-444 in a U-bottom 96-well plate (VWR, Cat. No. 10062-902) for 1 hour. T cells were then activated with Dynabeads Human T-Activator CD3/CD28 (Thermo Fisher Scientific, Cat. No. 11132D) at a 1:3 cells:beads ratio. 48 hours later, 5 μL of cell free supernatant was collected and assayed for IFNγ or IL2 using the AlphaLISA kit (Perkin Elmer, Cat. No. AL217F or AL221F). Data were analyzed with an EnVision Multilabel Plate Reader (Perkin Elmer). CGS-21680 used in experiments shown in Supp. Fig. 1B was from Tocris, Cat. No. 1063
Cells

MC38 cells were obtained from an external collaborator. CT26, RENCA, and B16 tumor cell lines were obtained from the ATCC. The identity and specific pathogen free (including mycoplasma) status of these cells was validated by microsatellite genotype analysis (IDEXX Bioresearch). MC38 cells were cultured in DMEM + 10% FBS (VWR). CT26 cells were cultured in RPMI-1640 (ATCC, Cat. No. 30-2001)+ 10% FBS (VWR). RENCA cells were cultured in RPMI (Thermo Fisher, Cat. No. 61870-127)+ 10% FBS (VWR) + 0.1 mM MEM non essential amino acids (Thermo Fisher, Cat. No. 11140-050) + 1 mM sodium pyruvate (Sigma Aldrich, Cat. No. S8636). 1% penicillin streptomycin solution (Thermo Fisher, Cat. No. 15140122) was added to all culture media. Cell lines were typically cultured three generations prior to use.

Mice

All animal studies were conducted in accordance with an Institutional Animal Care and Use Committee (IACUC). 6-8-week-old C57BL/6 and Balb/c mice were purchased from Charles River. Mice were typically housed in the vivarium (Corvus Pharmaceuticals) for two weeks prior to tumor cell injection. Mice used in the in vivo microdialysis procedure were housed and implanted with tumors at Charles River Laboratories. See Supp. Table S2 for additional details regarding the setup and dosing of animal models.

Tumor engraftment

Tumor cells were typically prepared in 100 µL cold PBS in a microfuge tube. A 31-gauge needle was used to perform a subcutaneous injection of cells onto the lower back region of syngeneic mice. See Supp. Table S2 for additional details regarding the setup and dosing of animal models. Caliper measurement was performed every 2-4 days using a digital caliper (Fowler-Sylvac). Tumor volume was calculated using the formula (length x width^2)/2.

CPI-444 treatment

A 10 mg/mL stock was prepared in 40% hydroxypropyl beta-cyclodextrin in 0.1 N hydrochloric acid, mixed on a stirrer plate, and filtered through a 0.45 micron filter. The solution was adjusted...
with 1.0 N sodium hydroxide and 1.0 M Citric acid to pH 3-4. A 10 mg/mL stock solution was further diluted into lower concentration: 1 mg/mL and 0.1 mg/mL.

Flow cytometry

Spleens and tumors were harvested at day 15 post implantation of 10^6 MC38 cells. Single cell suspensions were prepared mechanically using a 3 mL syringe plunger pushing the tumor or organ through a 70 μm filter. Red blood cells in the spleens were lysed using ACK Lysis Buffer (Life Technologies). Live/Dead cell discrimination was performed using Live/Dead Fixable Violet Dead Cell Stain kit (Life Technologies), according to the manufacturers protocol. Cell surface staining was done for 20-30 minutes. Intracellular staining was done using a fixation/permeabilization kit (FOXP3 fix/perm kit, Biolegend). Antibodies used include: anti-CD45 (Biolegend, Cat. No. 103116), anti-CD4 (Biolegend, Cat. No. 100540), anti-CD8 (Biolegend, Cat. No. 100540), anti-CD3 (Biolegend, Cat. No. 100216), anti–PD-1 (Biolegend, Cat. No. 124321), anti-GITR (Biolegend, Cat. No. 120222), anti-LAG3 (eBioscience, Cat. No. 11-2231-82), anti-CD127 (Biolegend, Cat. No. 135033), and anti-IFN-γ (BioLegend, Cat. No. 505831). All flow cytometric analysis was done using Cytoflex (Beckman Coulter) and analyzed using FlowJo software (TreeStar).

CD73 immunohistochemistry (IHC)

After routine deparaffinization and rehydration, antigen retrieval was performed using a Dako Target Retrieval and a Dako Pascal pressure chamber. After a 30 minute application of blocking solutions (vendor unknown) and rinsing, the primary antibody (CD73; clone D7F9A, Cell Signaling Technology) was applied at a 1:200 dilution for one hour. Polyclonal rabbit IgG, adjusted to the equivalent protein concentration as the primary antibody, was used as the negative isotype control. MACH 3 HRP Polymer (Biocare Medical) and Betazoid DAB (Biocare Medical) were used for detection. Sections were counterstained with Mayer’s hematoxylin. Each stained histologic section of tumor (test sample) was assessed microscopically and scored according to the intensity of the appropriate compartmental staining (no staining = 0, weak staining = 1, moderate staining = 2, strong staining = 3) and extent of stained cells (0% = 0, 1–10% = 1, 11–50% = 2, 51–80% = 3, 81–100% = 4). The final score for each test sample was determined by multiplying the intensity score with the extent score of stained cells, with a
minimum score of 0 and a maximum score of 12. Staining on endothelial cells was excluded from the assessment presented in Figure 6C. Photomicrographs were taken on an Olympus BX-41 brightfield microscope using Olympus DP Controller and DP Manager software.

In vivo microdialysis procedure

In vivo microdialysis and adenosine quantification were performed by Charles River Laboratories, South San Francisco. Briefly, mirodialysis probes were implanted into tumors or healthy contralateral subcutaneous tissue when tumors were approximately 200-300 mm3. Microdialysis was performed one day after surgery at a flow rate of 1.5 μL/minute using perfusion fluid composed of 147 mM NaCl, 3.0 mM KCl, 1.2 mM CaCl$_2$, and 1.2 mM MgCl$_2$, omitting inhibitors of adenosine metabolism and transport. Concentrations of adenosine were determined by HPLC with tandem mass spectrometry detection in positive ionization mode using an API 4000 triple quadrupole (Applied Biosystems, USA) equipped with a Turbo Ion Spray interface. Data were calibrated and quantified using the Analysttm data system (Applied Biosystems, version 1.4.2).

NanoString analysis of MC38 tumors

Tumor excision was performed on MC38 tumor bearing mice treated with either Anti-PD-L1 or Anti-PD-L1 + CPI-444 9 days after treatment initiated. See Supp. Table S2 for additional details regarding the setup and dosing of animal models. Tumors were kept in RNAlater Stabilization Solution (Thermo Fisher Scientific, Cat. No. AM7021) at 4 degree. RNA extraction was done within a week post tumor excision using RNeasy Mini Kit from Qiagen (Cat # 74106). Extraction was done according to manufacturer’s protocol. Mouse Cancer Immune Panel (NanoString, Cat. No. XT-CSO-MIP1-12) along with a custom codeset consisting of probes to Adk, Adm, Adora2b, Adora3, Apobec3, Bbc3, Bnip3, Ccnd2, Cnr1, Cnr2, Drd2, Drd3, Drd4, Epas1, Epo, Fosl1, Grm5, Nr4a1, Nr4a2, Nt5c1a, P2rx7, Panx1, Ptgk1, Pttn, Slc28a2, Slc29a1, Slc29a2, Sla2a1, Usp4 was used. All steps were done according to NanoString’s protocol. Data was analyzed using nSolver Analysis Software version 2.6.

RESULTS
CPI-444 is a Potent and Selective A2AR Antagonist

CPI-444 is a synthetic, non-xanthene small molecule with a molecular weight of 407.43 (Fig. 1A). The ability of CPI-444 to displace radioligand binding to the four identified adenosine receptor subtypes (A1, A2A, A2B, and A3) was tested with human recombinant receptors expressed in mammalian cell lines (Supplementary Table S1). CPI-444 bound A2A receptors with a Ki of 3.54 nM and demonstrated a greater than 50-fold selectivity for the A2A receptor over other adenosine receptor subtypes (Fig. 1B). Adenosine signaling through A2AR induces cAMP production (13, 21). Inhibition of cAMP production resulting from stimulation with the high affinity, stable adenosine analogue NECA (5'-N-Ethylcarboxamidoadenosine) is frequently used as readout for activity of A2AR antagonists (21, 36). Notably, NECA is a much more potent agonist of A2AR and A2BR (A2AR Ki = 20 nM, A2BR EC$_{50}$ = 330 nM) than adenosine (A2AR Ki = 700 nM, A2BR EC$_{50}$ = 24000 nM)(21). The ability of CPI-444 to functionally antagonize A2AR and block adenosine-mediated cAMP induction was investigated using HEK-293 cells that stably overexpress A2AR. CPI-444 blocked the induction of cAMP by 1.5 nM NECA with an IC$_{50}$ of 17.03 nM (Fig. 1C).

CPI-444 Restores T-Cell Activation In Vitro

Activated T cells have high expression of A2AR, and NECA-mediated activation of A2AR increased cAMP in human PBMC T cells (Fig. 2A), consistent with previous reports (13, 36-38). Inclusion of CPI-444 led to a dose-dependent inhibition of the production of intracellular cAMP following stimulation of activated primary human T cells with NECA (IC$_{50}$ = 70 nM) (Fig. 2A). CPI-444 completely inhibited NECA-mediated elevation of cAMP in these human PBMC cultures, suggesting that A2AR is the dominant adenosine receptor that mediates immune suppression in this system. Elevated intracellular cAMP following A2AR activation results in the phosphorylation of CREB (cAMP response element-binding protein)(39). CPI-444 treatment inhibited phosphorylation of CREB (pCREB) (Supplementary Fig. S1A) in NECA-stimulated cells. These results demonstrate that CPI-444 restores T-cell signaling in the presence of adenosine analogs.

We next sought to determine if CPI-444 abrogated the immunosuppressive effects of adenosine on T-cell activation and Th1 cytokine release. Th1 cytokines such as IL2 and IFN¥
stimulate the differentiation and activation of cytotoxic lymphocytes that are responsible for the cell-mediated immune responses against viruses and tumor cells. IL2 is expressed by activated T cells, but not resting T cells, making it a surrogate for T-cell activation. Primary human PBMCs (n=15 donors) were cultured in the presence of NECA (0.1, 1, or 10 μm) to simulate the effects of adenosine on immune cell function. T cells were then activated for 48 hours. NECA suppressed release of IL2 (Fig. 2B) and IFNγ (Fig. 2C) in a concentration-dependent manner, mimicking the immunosuppressive effects of adenosine signaling. Antagonism of A2AR with CPI-444 (0.1, 1, or 10 μm) inhibited the immunosuppressive effects of NECA and restored IL2 and IFNγ secretion back to or above that observed in the absence of NECA signaling (DMSO control) in most instances. Similar results were observed in separate donors using a second A2AR agonist, CGS-21680 (A2AR Ki = 27 nM, A2BR EC50 = 361000 nM) (Supplementary Fig. S1B)(21). To investigate the intracellular mechanism of NECA-mediated T-cell suppression, the activated, phosphorylated form of extracellular signal-regulated kinase (pERK) was measured following T-cell receptor (TCR) activation. Pre-treatment of PBMCs with NECA inhibited pERK induction by TCR cross-linking, and CPI-444 fully restored pERK induction (Supplementary Fig. S1C). These results showed that restoration of T-cell function may be an important mechanism by which CPI-444 enables an antitumor response in vivo.

In Vivo Tumor Efficacy of CPI-444 and Tumor Adenosine

MC38 is a mouse colon carcinoma cell line that is responsive to immune checkpoint blockade, including anti–PD-1 antibodies (28, 29). To evaluate the antitumor efficacy of CPI-444 in vivo, we engrafted MC38 cells onto the backs of syngeneic C57BL/6 mice. One day after tumor cell engraftment, vehicle control solution or CPI-444 (1, 10, or 100 mg/kg) was administered daily via oral gavage for 28 days (see Supplementary Table S2 for details of all animal experiments). Administration of CPI-444 at 10 mg/kg and 100 mg/kg resulted in a significant inhibition of tumor growth, whereas 1 mg/kg had no discernable effect compared to vehicle treated animals (Fig. 3A and Supplementary Fig. S2A-C for spider plots of individual mice). Complete tumor regression was observed in 9/29 mice treated with CPI-444 (Supplementary Fig. S2D). These mice were evaluated by macroscopic examination and direct palpation for tumor recurrence for an additional six weeks after dosing was terminated. No tumor growth was observed, indicating that the tumor had been fully eliminated. To determine whether
the immune response initiated by CPI-444 treatment resulted in a long term, memory response against tumor antigens, we rechallenged these mice with a new engraftment of MC38 tumor cells. Modest tumor growth was observed in the first 5 days after rechallenge. However, the tumors were fully rejected in all nine rechallenged mice over the following 30 days (Fig. 3B). These mice were monitored for signs of tumor recurrence for an additional 100 days, but no tumor growth was observed in any animal. Tumor elimination occurred in the absence of any additional CPI-444 treatment. These results demonstrate that A2AR blockade with CPI-444 can elicit durable systemic immune memory without provoking the problematic activation-induced cell death (AICD) reported in studies utilizing A2AR-deficient T cells (40). CPI-444 treatment resulted in a similar inhibition of tumor growth in the B16F10 melanoma (100 mg/kg, Fig. 3C) and RENCA renal cell cancer syngeneic models (10 mg/kg, Fig. 3D).

We next aimed to determine if extracellular adenosine concentrations in the TME correlated with the efficacy of CPI-444. CPI-444 has single agent activity in the MC38 tumor model (Fig. 3A and B), but not in the CT26 model (Fig. 4C and D). Microdialysis probes were surgically implanted into established MC38 or CT26 tumors or healthy contralateral subcutaneous tissue as a control. Free interstitial adenosine was collected in live animals by microdialysis 24 hours later and measured by HPLC-coupled tandem mass spectrometry. Elevated adenosine concentrations were detected in the tumor microenvironment of MC38 tumors (n=8) compared to the healthy contralateral subcutaneous tissue (Fig. 3E). A similar elevation of adenosine was detected in established CT26 (n=7) tumors (Fig. 3F). Free extracellular adenosine was approximately 120-150 nM in the tumors of both cell lines (Fig. 3E and F), suggesting the concentration of adenosine alone does not predict CPI-444 efficacy in MC38 and CT26 tumors.

CPI-444 treatment was well-tolerated in all mouse tumor models. A transient increase in activity and diarrhea was observed at high doses of CPI-444 (100 mg/kg) in Balb/c mice, but not in C57BL/6 mice. A moderate weight loss was observed in the RENCA model following CPI-444 treatment. These observations do not appear to be related to drug exposure (Supplementary Table S3) and may represent an inherent differential sensitivity to CPI-444 between the two strains. CPI-444 (1 pm - 10 μM) did not impact tumor cell proliferation in vitro (Supplementary Fig. S2E and F), suggesting that CPI-444 efficacy observed in vivo is unlikely due to a direct effect on tumor cells.
CPI-444 Enhances Anti–PD-L1 and Anti–CTLA-4 Efficacy in Syngeneic Mouse Tumor Models

We evaluated the efficacy of CPI-444 when administered in conjunction with a blocking monoclonal antibody against PD-L1. CPI-444 (100 mg/kg) treatment alone produced a statistically significant, but incomplete, inhibition of established MC38 tumor growth (Fig. 4A). Similar tumor growth inhibition was observed in mice treated with anti–PD-L1 (Fig. 4A). In contrast, administration of CPI-444 and anti–PD-L1 in combination stabilized or eliminated tumors in 5/10 mice (Fig. 4A and B). Similar results were observed when CPI-444 was combined with anti–PD-1 in the CT26 model. Administration of anti–PD-1 or CPI-444 (1 mg/kg) did not significantly inhibit tumor growth. However, CPI-444 treatment in combination with anti–PD-1 did inhibit tumor growth and improved overall survival for more than 3 weeks following the last dose of CPI-444 or anti–PD-1 antibody (Fig. 4C and D).

The efficacy of CPI-444 and anti–CTLA-4 treatment was also evaluated in the MC38 and CT26 tumor models. Combining CPI-444 (100 mg/kg) with anti–CTLA-4 synergistically inhibited the growth of established MC38 tumors (Fig. 4E), leading to complete tumor elimination in 100% of treated mice (Supplementary Fig. S3A). Dual blockade of A2AR and CTLA-4 was also more effective than either monotherapy in the CT26 model. CPI-444 (10 mg/kg) potentiated the efficacy of anti–CTLA-4 at both 100 μg (Fig. 4F) and 50 μg (Supplementary Fig. S3B) doses.

Prior attempts to combine anti–PD-1 and anti–CTLA-4 antibody therapy have resulted in enhanced clinical activity, but also increased incidence of treatment-related adverse events in melanoma patients (41, 42). We hypothesized that A2AR blockade with CPI-444 would enable lower doses of antibody in anti–PD-1 and anti–CTLA-4 combinations, while preserving the enhanced efficacy. A triple-combination experiment was performed wherein CPI-444 (10 mg/kg), anti–PD-1 (25 μg/dose), and anti–CTLA-4 (25 μg/dose) were administered at low doses. CPI-444 and anti–PD-1 lost single agent efficacy at these doses. However established CT26 tumors were still fully eliminated in 5/10 mice treated with the triple-combination compared to 30% of mice in the second best treatment doublet of CPI-444 plus anti–CTLA-4 (Fig. 4G and H). These results suggest that blockade of the adenosine pathway may be important for enhancing antitumor responses and limiting toxicity in solid tumors that show an incomplete response to anti–PD-L1 or anti–CTLA-4 therapy.
CPI-444 Enhances T-Cell Activation and Antitumor Immunity In Vivo

Flow cytometry was performed on MC38 tumors treated with CPI-444 with and without anti–PD-L1 in order to characterize the effects of CPI-444 on antitumor immune responses. The efficacy of CPI-444 in combination with anti–PD-L1 was associated with increased T-cell infiltration (Fig. 5A). CPI-444 antagonism of adenosine signaling increased IFNγ production in CD8+ T cells (Fig. 5B). An increase in GITR and IL7Rα expression was also observed on T cells (Fig. 5C and D). GITR has low expression on resting T effector cells but is quickly upregulated following T-cell activation, whereas IL7Rα expression is a marker of memory T cells. We also observed evidence of immune activation in the periphery, as CPI-444 treatment increased the frequency of CD8+PD-1+ splenocytes (Fig. 5E). This increased immune response was associated with smaller MC38 tumors (Fig. 5E). CPI-444 also increased the expression of LAG3 on CD8+ splenocytes (Fig. 5F). LAG3 is upregulated following T-cell stimulation as part of a compensatory inhibition mediated through interactions with MHC class II. In total, these observations suggest that CPI-444 enhances T-cell activation in both the periphery and tumor microenvironment.

Antitumor Efficacy of CPI-444 Requires CD8+ Cells

Previous studies have highlighted the role of adenosine signaling in protecting tumors from T cell–mediated clearance (13, 43). Antibody-mediated depletion of CD8+ cells in tumor-bearing mice prior to treatment abolished the efficacy of CPI-444 alone (Fig. 6A, left panel) and in combination with anti–PD-L1 (Fig. 6A, right panel). Depletion of CD4+ cells had minimal effect on efficacy (Fig. 6A). These results demonstrate the essential contribution of CD8+ T cells in mediating primary and secondary immune responses following A2AR blockade.

A2AR Blockade Induces a Compensatory Increase in CD73 Expression

CPI-444 inhibits the growth of established MC38 tumors (Figure 4A, 4E, and 6A), but these tumors are not typically fully eliminated with single agent treatment alone. Further elevation of adenosine in the TME through increased CD73 expression represents a potential resistance mechanism by which tumors could overwhelm A2AR antagonism. We observed a significant increase in the frequency and intensity of CD73 expression in MC38 tumors
following treatment with CPI-444 (Fig. 6B and Supplementary Fig. S4A and B for images depicting specificity of anti-CD73). Anti–PD-L1 treatment also increased CD73 expression in MC38 tumors (Fig. 6B), as well as on splenocytes collected from tumor-bearing mice (Fig. 6C). Adenosine generated by this compensatory increase in CD73 expression may restore immunosuppression and, thereby, restrict the efficacy of A2AR inhibitors and anti–PD-L1 treatment. Future studies will determine if dual blockade of A2AR and CD73 neutralizes this potential resistance mechanism and enables a more robust antitumor response.

Gene Expression Changes Associated with Combination CPI-444 and Anti–PD-L1 Efficacy

We assessed gene expression changes associated with therapeutic response to combination CPI-444 and anti–PD-L1 treatment in MC38 tumors. Combined CPI-444 plus anti–PD-L1 treatment cleared ~90% of established MC38 tumors (Fig. 6A). We treated more than 50 MC38 tumor-bearing mice with CPI-444 and anti–PD-L1 to generate 5 tumors that were non-responsive to treatment. RNA was purified from tumors excised at day 17, a time at which both responding and non-responding (n=5/each) tumors were still present (Fig. 7A). Gene expression was assayed using the NanoString PanCancer Immune Profiling Panel and a custom adenosine-related codeset. An aggregate T-effector signature consisting of genes for CD8a, CXCL9, CXCL10, EOMES, IFNγ, GZMA, GZMB, and TBX21 was higher in responding tumors, consistent with an activated T cell–mediated antitumor response (Fig. 7B). Immune checkpoints, such as genes for PD-L1, LAG3, TIGIT, CD40, and GITR (TNSRSF18), were expressed in responding tumors, suggesting possible mechanisms of adaptive resistance and feedback inhibition (Fig. 7B). The expression of genes for CFI and NT5C1a was higher in non-responders (Fig. 7B). The role of these genes in mediating resistance to combination CPI-444 and anti–PD-L1 is currently unknown, but the 5’ nucleotidase NT5C1a could contribute to additional adenosine generation in the TME following its extracellular release from dying cells. Caution must be applied in interpreting these results. Although individual genes were significantly different between groups, the relatively small number of total samples (n=10) caused all genes to lose statistical significance after adjustments for multiple testing (Supplementary Table S4 for raw and corrected p values).

DISCUSSION
Elevated extracellular adenosine within the TME suppresses antitumor immune responses. Here, we showed that blockade of A2AR with CPI-444 can neutralize adenosine signaling and restore antitumor immunity. CPI-444 treatment alone and in combination with anti–PD-L1, anti–PD-L1, and anti–CTLA-4 induced T cell–mediated antitumor responses, inhibited tumor growth, and enabled antitumor immune memory. CPI-444 efficacy alone and in combination with anti–PD-L1 was associated with T-cell infiltration and an induction of a Th1 gene expression signature. CD73 expression was also increased in treated animals, revealing a potential resistance mechanism to CPI-444 and anti–PD-L1 treatment. These preclinical findings have been observed in patients treated with CPI-444 alone and in combination with anti–PD-L1 (atezolizumab), including patients who previously failed anti–PD-L1 therapy (44, 45). Expression of the adenosine pathway, including A2AR, CD73, and CD39, was shown to be significantly increased in patients who failed to respond to prior anti–PD-L1 blockade, supporting the hypothesis that adenosine signaling is a potential resistance mechanism to anti–PD-L1 treatment (45). Increases in T-cell infiltration were observed across multiple CD73+ tumors treated with CPI-444, as well as a significant induction of immune checkpoints associated with IFNγ signaling (CXCL9 and CXCL10), effector function (GZMA and GZMB), and immune regulation (IDO1 and LAG3) (45). Evidence of immune activation has also been observed in the periphery (44). CPI-444 treatment can induce substantial changes in the TCR repertoire in treated patients, including the generation of multiple novel, potentially tumor neoantigen-specific TCR clones (46). Our data clearly demonstrate immune modulation and antitumor responses in mice and human cancer patients receiving an A2AR antagonist.

These results add to a well-established precedent for pharmacological blockade of A2AR in oncology, either as single agent or combined with other checkpoint inhibitors (13, 26-32). We typically started dosing CPI-444 at the same time as anti–PD-L1 or anti–CTLA-4 treatment. Experiments exploring the sequence and timing of treatment are ongoing. In the preclinical studies reported here, CPI-444 potentiated antitumor responses in mice that otherwise failed to completely respond to anti–PD-L1 treatment. The mechanisms by which A2AR blockade overcomes anti–PD-L1 resistance are under investigation, but these results suggest that blockade of adenosine signaling may also enable antitumor responses in patients that previously failed anti–PD-L1 immunotherapy. Prior observations that anti–PD-L1 treatment increased A2AR and CD73 expression suggest that CPI-444 may neutralize adenosine signaling that would otherwise
actively limit immune responses following anti–PD-L1 treatment (28, 29). This idea is consistent with reports from Beavis et al. demonstrating increased IFNγ production upon dual blockade of A2AR and PD-1 (29). Notably, others have shown that inhibiting A2AR signaling does not increase PD-1 or PD-L1 expression and may even decrease PD-1 on TILs (29, 40). Blockade of A2AR with CPI-444 also enabled us to decrease the effective dose of anti–PD-1 and anti–CTLA-4, while preserving efficacy in the CT26 mouse tumor model. These findings may be particularly applicable in mitigating the increase in treatment-related adverse events (Grade 3 or 4) observed in melanoma patients treated with nivolumab plus ipilimumab (55% compared with 16.3% of nivolumab or 27.3% of ipilimumab)(41).

Expression of CD73 in the TME appears to influence the therapeutic activity of A2AR antagonists in preclinical models (10, 26, 29). In our studies, we observed that blockade of A2AR with CPI-444 may induce a compensatory increase in CD73 expression within the TME, presumably as a mechanism to increase adenosine and reassert immune suppression. These results are similar to those reported by Young et al. and suggest that dual targeting of A2AR and CD73 may further enhance antitumor responses (47). Such an approach has already been shown to be beneficial in limiting tumor growth and metastasis in mouse models (47). We also observed that anti–PD-L1 treatment induced CD73 expression as a potential adaptive resistance mechanism. Similar observations of increased CD73 expression have been observed in multiple patients’ tumors following anti–PD-1 treatment in clinical trials (45, 48). It is possible that adenosine in some tumors can be elevated to the point that substantial signaling through the low affinity A2B receptor becomes engaged (21). In this scenario, simultaneous blockade of A2AR and A2BR may be required to fully restore antitumor immunity, as A2BR signaling has been shown to limit myeloid cell immune responses. However, the relatively low concentrations of adenosine in the tumor models studied here indicated that signaling through the A2BR is not significant, and blockade of this receptor is unlikely to further enhance tumor immunity. The influence of A2AR, A2BR, and CD73 expression on CPI-444 treatment efficacy is currently being evaluated in patient matched pre- and post- treatment tumor biopsies and PBMC specimens collected in our clinical study.

Here, we reported that free extracellular adenosine concentrations were approximately 100 – 150 nM in subcutaneously engrafted MC38 and CT26 tumors. This result is similar to the values reported by Blay et al. but are lower than estimates of 10-100 μM proposed by others.
(14). The microdialysis method utilized in this study enabled an accurate, in situ, continuous measurement of extracellular adenosine in the TME. This method avoided the use of exogenous adenosine catabolism inhibitors that block adenosine degradation and transport (plasma t_{1/2} ≤ 10 sec) resulting in artificially elevated measurements by allowing adenosine to accumulate in the sample (49). This method does not rely on mechanical or enzymatic tissue disruption that results in potential over-estimation of extracellular adenosine by including the adenosine generated upon release of intracellular adenine nucleotide stores into the extracellular milieu. Future studies will focus on evaluating adenosine in additional tumor models, including orthotopically engrafted tumors and genetically engineered tumor models that may more closely resemble the natural evolution of a suppressive microenvironment. We propose the well preceded in vivo microdialysis methodology be adopted by all investigators developing adenosine pathway modulators or in studies with potential therapeutic partners that may perturb adenosine in the TME (50).

In total, this work showed that CPI-444 is a potent and selective A2AR antagonist that enabled antitumor immunity in preclinical tumor models. Based on these results and others, we are conducting a Phase 1/1b clinical trial (NCT02655822) to examine safety, tolerability, biomarkers, and efficacy of CPI-444 as a single agent and in combination with the anti–PD-L1, atezolizumab, in patients with non-small cell lung (NSCLC), melanoma, renal, triple-negative breast, and other (bladder, prostate, head and neck, colorectal) advanced tumors.

ACKNOWLEDGMENTS: We thank Leiv Lea, Brandon Dezowiecki, Victoria Dominguez, Ting Wang, Katherine Woodward, and Ran Xiao for administrative support. We thank Felicia Flicker and Jingrong Xu for support with formulations and preparation of reagents. We thank Carmen Choy, James Janc, Ben Jones, Long Kwei, Ginna Laport Zhihong Li, Brian Munneke, Patrick Ng, and Erik Verner for scientific advice, technical support, and thoughtful discussion.

We thank J Irelad for bioinformatics support and Florentino San Pablo Timothy Velilla and for assistance with animal experiments and animal care. We also thank Drs. Jonathan Powell and Robert Leone at Johns Hopkins Sidney Kimmer Cancer Center for thoughtful discussions.

REFERENCES

FIGURE LEGENDS

Figure 1: CPI-444 is a potent and selective A2AR inhibitor.

(A) Structure and molecular weight of CPI-444. (B) cAMP induction by NECA (1.5 nM) in HEK-293 cells stably overexpressing A2AR and treated with CPI-444 (0.1 nM – 10000 nM).
Figure 2: CPI-444 restores T-cell activation.

(A) CPI-444 blocks the production of cAMP in primary human T cells upon A2AR stimulation with NECA. (B-C) NECA (0.1, 1, or 10 μm) suppressed release of the IL2 and IFNγ from activated human PBMCs (n=15), mimicking the immunosuppressive effects of adenosine signaling. Blockade of A2AR with CPI-444 (0.1, 1, or 10 μm) restored IL2 and IFNγ secretion back to levels observed in the absence of NECA signaling (DMSO control). Samples were analyzed 48 hours after stimulation. The median value is represented by a white line within the box, and the whiskers indicate the 5-95 percentile. Repeated measures analysis of the relationship between the percent inhibition of either IL2 or IFNγ to increases in CPI-444 was used to determine significant positive slopes (IL2 p-value = 0.01, IFNγ p-value = 0.03).

Figure 3: CPI-444 induces long term, antitumor immunity.

(A) Tumor growth in C57BL/6 mice (n=9-10 per group) treated with CPI-444 at the indicated concentrations after s.c. injection of 10⁶ MC38 cells. Tumor growth was monitored every 2-4 as indicated in the figure. (B) 9 mice that achieved complete tumor growth inhibition were rechallenged with a new engraftment of 10⁶ MC38 tumor cells. Tumors were assessed every 2-3 days over the following 15 days. (C) CPI-444 (100 mg/kg) inhibits the growth of B16F10 tumors 10 days after injecting 2.5*10⁵ cells. D) CPI-444 (10 mg/kg) inhibits the growth of RENCA tumors 10 days after injecting 2*10⁵ cells. (E-F) Concentration of extracellular adenosine over the indicated times in (E) MC38 (n=8) and (F) CT26 (n=7) tumors or healthy contralateral subcutaneous tissue when tumors were approximately 200-300 mm³, as measured by microdialysis. Error bars represent standard error of the mean. Significance was calculated using two way ANOVA. *p<0.05, **p<0.01, ***p<0.001.

Figure 4: CPI-444 synergizes with anti–PD-L1 and anti–CTLA-4 treatment.

(A-B) Anti–PD-L1 (200 μg, n=10) or CPI-444 (100 mg/kg, n=10) monotherapy resulted in an incomplete inhibition of MC38 tumor growth, while administration of CPI-444 (100 mg/kg) in combination with anti–PD-L1 (200 μg) stabilized or eliminated tumors in 5/10 mice. (C-D) Administration of CPI-444 (1 mg/kg) in combination with anti–PD-1(100 μg) inhibits the growth
of (C) CT26 tumors (n=10), resulting in (D) improved overall survival. (E-F) CPI-444 treatment
in combination with anti–CTLA-4 (100 µg) successfully eliminated tumors in (E) MC38 (100
mg/kg) and (F) CT26 (10 mg/kg) tumor models (n=10/group). (G) CPI-444 (10 mg/kg) treatment
combined with sub-therapeutic doses of anti–CTLA-4 (25 µg) and anti–PD-1 (25 µg) induced a
rapid regression in the CT26 tumor model (n=10/group). (H) Approximately two weeks after
treatment initiated, the combination of all three treatments successfully eliminated tumors in 5/10
mice. Error bars represent standard error of the mean. Significance was calculated using two way
ANOVA, except in panel D which was calculated with log-rank (Mantel-Cox) test. *p<0.05,
p<0.01. *p<0.001.

Figure 5: CPI-444 enhances T-cell activation in MC38 tumors.
(A) T-cell infiltration into MC38 tumors is increased following treatment with CPI-444 in
combination with anti–PD-L1. Data was gated on CD45+ cells. (B) IFNγ production in CD8+ T
cells is increased by CPI-444 alone and in combination with anti–PD-L1. (C) CPI-444 and anti–
PD-L1 increase GITR expression on CD45+CD3+ T cells. (D) CPI-444 increases the frequency
IL7R expression on CD4+ T cells. (E) Increased frequency of CD8+PD-1+ splenocytes in CPI-
444 plus anti–PD-L1 treated mice is associated with smaller tumors. (D) CPI-444 increases the
frequency of CD8+Lag3+ T cells. Data was gated on the CD45+CD3+ population in the spleen.
Significance was calculated using t-tests. *p<0.05, **p<0.01. ***p<0.001. Each symbol
represents an individual mouse tumor or spleen in all data plots. 100 mg/kg CPI-444 and 200 µg
anti-PD-L1 were used in all experiments shown here.

Figure 6: CPI-444 efficacy requires CD8+ T cells and is associated with increased CD73
expression.
(A) Depletion of CD8+ T cells prior to CPI-444 monotherapy (100 mg/kg, left panel) or CPI-444
(100 mg/kg) + anti–PD-L1 (200 µg) combination treatment (right panel) abolishes antitumor
efficacy in the MC38 tumor model. Anti-CD4 (Clone GK1.5, 100 µg)) and anti-CD8 (Clone 53-
6.72, 500 µg) were used for depletion of CD4+ and CD8+ subsets. (B) CD73 expression was
significantly higher in MC38 tumors treated with CPI-444 (100 mg/kg) + anti–PD-L1 (200 µg)
relative to controls. CD73 was assessed by IHC and scored as a composite of frequency of
expression x intensity of expression (scale: 1-5). Endothelial cell staining was excluded from the assessment. (C) Anti–PD-L1(200 μg) treatment increased CD73 expression on splenocytes from MC38 tumor bearing mice. Significance was calculated using two way ANOVA. *p<0.05, **p<0.01, ***p<0.001.

Figure 7: Gene expression changes associated with response to combination CPI-444 and Anti–PD-L1 treatment in MC38 tumors.

(A) Tumor volumes of responding (n=5) and non-responding (n=5) MC38 tumors on day 17 post engraftment. Significance was calculated using unpaired Students t-tests. (B) RNA from responding (R) and non-responding (NR) tumors treated with combination CPI-444 (100 mg/kg) and anti–PD-L1 (200 μg) was assayed using the NanoString PanCancer Immune Panel. All genes with raw p value less than 0.01 are shown. Positive fold change values represent genes with higher expression in responding samples.
Figure 1

A

CPI-444
Molecular Weight = 407.43 g/mol

B

Inhibition of cAMP (%)

IC_{50} = 17.03 nM
Figure 5

A

B

C

D

E

F

CD3+ Cells (%)

CD8+ IFNγ+ Cells (%)

CD3+ GITR (MFI * 10^3)

CD4+ IL-7Rα+ (%)

Tumor Volume (mm^3)

CD8+ PD-1+ Cells (%)

CD8+ LAG3+ (%)

NT Vehicle + Isotype CPI-444 α-PD-L1 CPI-444 + α-PD-L1

NT Vehicle + Isotype CPI-444 α-PD-L1 CPI-444 + α-PD-L1

NT Vehicle + Isotype CPI-444 α-PD-L1 CPI-444 + α-PD-L1

NT Vehicle + Isotype CPI-444 α-PD-L1 CPI-444 + α-PD-L1

NT Vehicle Control CPI-444 α-PD-L1 CPI-444 + α-PD-L1

NT Vehicle Control CPI-444 α-PD-L1 CPI-444 + α-PD-L1

Larger tumors
Less immune response

Smaller tumors
Enhanced immune response
Figure 6

A

CPI-444 ALONE

CPI-444 + ANTI-PD-L1

Tumor Volume (mm³)

α-CD4⁺ + α-CD8⁺

α-CD8⁺

Veh Control

Days Since Engraftment

Treatment Initiated

0

1000

500

0

10

500

1000

1500

Days Since Engraftment

Days Since Engraftment

Treatment Initiated

0

1000

500

0

10

500

1000

1500

B

CD73 Expression (IHC Score)

p < 0.0001

p = 0.005

p < 0.0001

NT Vehicle

+ Isotype

CPI-444

α-PD-L1

CPI-444 +

α-PD-L1

CD73 Expression (MFI)

p = 0.002

Vehicle Control

α-PD-L1

p < 0.0001

p < 0.0001

p < 0.0001

* * *
Figure 7

A

![Bar graph showing Tumor Volume (mm^3) for Responders and Non-Responders with CPI-444 + Anti-PD-L1 treatment. The graph includes a p-value of 0.02.]

B

![Heatmap showing the expression levels of genes with a raw Z-score. The heatmap is divided into Responders (R) and Non-Responders (NR).]
A2AR Antagonism with CPI-444 Induces Anti-Tumor Responses and Augments Efficacy to Anti-PD-(L)1 and Anti-CTLA-4 in Preclinical Models.

Stephen B Willingham, Po Y Ho, Andrew Hotson, et al.

Updated version Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-18-0056

Supplementary Material Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2018/08/21/2326-6066.CIR-18-0056.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/early/2018/08/21/2326-6066.CIR-18-0056. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.