HER2-targeted polyinosine/polycytosine therapy inhibits tumor growth and modulates the tumor immune microenvironment

Maya Zigler¹, Alexei Shir¹, Salim Joubran¹*, Anna Sagalov¹, Shoshana Klein¹, Nufar Edinger¹, Jeffrey Lau², Shang-Fan Yu², Gabriel Mizraji³, Anat Globerson Levin⁴, Mark X. Sliwkowski⁵ and Alexander Levitzki¹

¹Unit of Cellular Signaling, Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 91904.
²Translational Oncology Department, Genentech Inc., South San Francisco, CA, USA 94080.
³Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Hadassah, Jerusalem 91120, Israel.
⁴Department of Immunology, Weizmann Institute of Science, Rehovoth, Israel 76100.
⁵Molecular Oncology Department, Genentech, Inc. South San Francisco, CA, USA 94080.
* Current address – CS Bio Co. 20 Kelly CT, 94025, Menlo Park California, USA

Running title: HER2-targeted polyinosine/polycytosine therapy

Keywords: Polyinosine/polycytosine, HER2, Immune system, Apoptosis, Targeted therapy

Financial support: This work was supported by ISF Grant No. 1556/13 (A.L.), ERC Advanced Grant No. 249898 (A.L.), Lady Davis Post-Doctoral Fellowship Trust (M.Z.).

Conflict of Interest: The authors have no potential conflict of interest to disclose

Corresponding author: Prof. Alexander Levitzki, MSc, PhD. Unit of Cellular Signaling, Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 91904
Phone: 97226585404
Email: alex.levitzki@mail.huji.ac.il

Abstract

The development of targeted therapies that affect multiple signaling pathways and stimulate antitumor immunity is greatly needed. About 20% of patients with breast cancer overexpress HER2. Small molecules and antibodies targeting HER2 convey some survival benefits, however patients with advanced disease succumb to the disease under these treatment regimens, possibly because HER2 is not completely necessary for the survival of the targeted cancer cells. In the present study we show that a polyinosine/polycytosine (pIC) HER2-homing chemical vector induced the demise of HER2-overexpressing breast cancer cells, including trastuzumab-resistant cells. Targeting pIC to the tumor evoked a number of cell-killing mechanisms, as well as strong bystander effects. These bystander mechanisms included type I IFN induction, immune cell recruitment, and activation. The HER2-targeted pIC strongly inhibited the growth of HER2-overexpressing tumors in immune competent mice. The data presented here could open additional avenues in the treatment of HER2-positive breast cancer.
Introduction

Despite treatment advances and earlier diagnosis, breast cancer remains a major contributor to cancer morbidity and mortality. The human epidermal growth factor receptor type 2 (HER2) is amplified and/or overexpressed in 20% of breast cancers (1-3). Overexpression of HER2 is associated with increased aggressiveness and significantly shortened disease-free and overall survival (4-7). Several targeted therapies have been approved for the treatment of HER2 positive breast cancer. These include the small molecular tyrosine kinase inhibitor (TKI) lapatinib, the humanized antibodies trastuzumab and pertuzumab, and the HER2-directed antibody-drug conjugate trastuzumab emtansine (T-DM1) (8).

The most commonly used targeted therapy for HER2 positive breast cancer patients is trastuzumab (Herceptin), a humanized monoclonal antibody to HER2 that blocks the activity of HER2 and actively mediates ADCC (9). Although trastuzumab significantly improves the disease-free survival and overall survival of breast cancer patients (10, 11), many patients develop resistance and succumb to the disease. Moreover, some patients show primary resistance to trastuzumab (12). Resistance to targeted therapy emerges due to the intrinsic genetic instability and heterogeneity of tumors (13, 14). Putative mechanisms of resistance to HER2-targeted therapies include shedding of the extracellular domain and up-regulation of compensatory signal transduction pathways (15). Escape from immune cell surveillance and co-option of the immune system to promote tumor progression also have been recognized as hallmarks of cancer (16).
The need for targeted therapies that affect multiple signaling pathways and simultaneously stimulate the anticancer action of the immune system led us to develop a novel treatment modality that utilizes the overexpression of HER2, but not its activity per se. Our treatment modality induces several apoptotic pathways and activates the immune system against the tumor, reducing the likelihood of resistance. This strategy is based on our recent success in the eradication of EGFR-overexpressing tumors, in which a non-viral vector, polyethylenimine-polyethyleneglycol (PP) conjugated to epidermal growth factor (PPE) selectively delivers a synthetic analog of viral double stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC) (17, 18). dsRNA is a strong inducer of anti-viral host defense, leading to innate and adaptive immune responses (19). Cellular uptake of dsRNA triggers several signaling pathways, including pro-apoptotic and pro-inflammatory pathways (20). The binding of dsRNA to Toll-like receptor 3 (TLR3) induces the synthesis of cytokines such as interferon (IFN) type I, a strong immune activator (20), as well as IFNγ-induced protein 10 kDa (IP-10), and growth-regulated protein a (GRO-α), which are potent chemoattractants for T cells (21). As such, pIC is a potent immune activator. In clinical trials pIC was associated with significant clinical benefit, but induced severe systemic toxic effects (22, 23), likely due to the fact that the pIC was administered in a non-targeted way.

In vivo, pIC targeted to EGFR-overexpressing glioblastoma tumors, as well as to disseminated tumors, eradicates tumors by activating multiple cell-killing pathways and through antitumor immune bystander effects (17, 18). We have improved the chemistry of the pIC-targeting vector and created a platform (24) that can be used to generate a
vector with any desired ligand. The first vector developed with the new platform targets the HER2 receptor.

Since the HER2 receptor lacks a natural ligand that can be used for targeting, we conjugated the nonviral vector, PP (24), to a HER2 affibody (25), to generate PPHAffibody (24). Affibody molecules are small, soluble, robust affinity ligands that were developed from the B domain of staphylococcal protein A (26). HER2 affibodies possess high affinity and high selectivity (25) and have been used for tumor labeling and targeting (27). The HER2 affibody, ZHER2:2891, binds to HER2 with high affinity (60 pM) and is internalized by HER2-expressing cells (25, 28). The chemical and physicochemical properties of the HER2-targeting vector used in this study have been described (24).

In this report, we demonstrate the eradication of HER2-overexpressing cells, utilizing targeted delivery of pIC. PPHAffibody complexed with pIC (pIC/PPAffibody) induced target-cell apoptosis, the secretion of pro-inflammatory cytokines, MHC class I expression, and the recruitment of lymphocytes to the treated cells. We show that targeted pIC, delivered systemically, significantly inhibited tumor growth, especially in immunocompetent mice.
Material and methods

Cell lines and reagents

BT-474^{GFP/LUC} cells are BT-474 cells transduced with lentivirus containing GFP/LUC plasmid. RENCA-HER2 cells (which overexpress human HER2/neu (29)), BT-474, BT-474^{GFP/LUC} and MCF-7 cells were maintained in RPMI-1640 medium (supplemented with 50 μg/mL G418 for RENCA-HER2), SK-BR-3 cells in DMEM, MDA-MB-231 cells in Leibovitz L-15 medium, BT-474R cells in Dulbecco's modified Eagle medium/Ham F12 1:1 (DMEM/F12, Life Technologies) supplemented with 1 μM trastuzumab, and 2 mM L-glutamine and MCF-7-Her2 cells (which overexpress human HER2/neu (30)) in DMEM/F12 medium (Gibco) supplemented with 250 μg/mL G418. All media were supplemented with 10% fetal bovine serum (FBS), 10⁴ U/L penicillin, and 10 mg/L streptomycin. Cells were cultured for ≤5 passages, were in logarithmic growth phase for all experiments, and were tested periodically for Mycoplasma. All cell lines were obtained from the ATCC (Manassas, VA, 1999-2002), except RENCA-HER2 (kindly provided in 2002 by Prof W. Wels), BT-474R (trastuzumab-resistant) cells (31) (kindly provided in 2013 by Dr. Maurizio Scaltriti and Dr. José Baselga), and MCF-7-Her2 (kindly provided in 2012 by Dr. M. C. Hung). Cells were maintained at 37 °C and 5% CO₂, except MDA-MB-231 (37 °C without 5% CO₂). Except where noted otherwise, cell culture reagents were from Biological Industries, Bet Ha’emek, Israel. MCF-7-Her2 cells were authenticated using STR DNA fingerprinting in 2011. BT-474R cells were validated by ATCC and confirmed by SNP array in 2008. RENCA-HER2 cells were
validated for HER2 expression using immunohistochemistry following cell inoculation in BALB/c mice. All other cell lines were not authenticated, however, cell morphology in culture was monitored and was consistent with ATCC description and relative HER2 amounts were confirmed by flow cytometry.

PBMCs were isolated and maintained as described previously (17).

Low molecular weight pIC was purchased from InvivoGen (France).

PPHAffibody and PPCys were generated as described (24). Throughout the text, the concentration of "pIC/PPHAffibody" or "pIC/PPCys" refers to the concentration of pIC in the complex. The N/P ratio (amine/phosphate) was 6 for in vitro studies and 6.6 for in vivo studies. pIC/PPHAffibody complexes were 206 nm as measured using a Nano-ZS Zetasizer (Malvern, UK) (24).

Chemotaxis

1 x 10^5 BT474 cells/well were plated in 24-well plates. The following day, the medium was replaced by medium containing 0.15% FCS, and pIC/PPHAffibody was added at the indicated concentrations. After 48 h, medium from the treated cells was placed in the bottom chamber of a transwell plate (5.0 µm-diameter pores, Corning), and 1 x 10^6 PBMCs (in 0.15% FCS) were placed in the upper chamber. After 4 h, medium from the bottom chamber was collected and lymphocytes were gated and counted by flow cytometry (BD FACS ARIAIII (BD Biosciences)).

Cell survival
Cells (0.5 x 10⁴–1 x 10⁴)/well, were plated in triplicates in a 96-well plate and treated 24 h later with pIC/PPHAffibody for 72 h. Cell survival was analyzed using CellTiter-Glo (Promega) and a Luminoskan Ascent Microplate Luminometer (Thermo Fisher Scientific Inc., France).

Flow cytometry

Cells were treated with pIC/PPHAffibody (1 μg/mL), labeled with FITC-conjugated mouse anti-human class I, HLA-ABC (clone G46-2.6, BD Pharmingen), and subjected to flow cytometry (BD FACS ARIAIII, BD Biosciences, USA) and analyzed using FlowJo software. Debris, dead cells, and doublets were gated out.

Confocal microscopy

Cells (1 x 10⁴ cells/well) were plated in an 8-well μ-slide (iBidi). The next day, the cells were treated with pIC/PPHAffibody for 2 or 4 h. Cells were fixed with 4% paraformaldehyde and permeabilized with 1% Triton X-100, incubated with antibody against affibody (Abcam, 1:200) followed by a secondary Alexa 488-conjugated antibody (Jackson ImmunoResearch 1:400). Confocal microscope (FV-1000 Olympus, Japan) pictures were taken at ×10 magnification.

mRNA extraction and analysis by qRT-PCR

Cells were treated with pIC/PPHAffibody or pIC/PPCys (1 μg/mL) for 2h or 4h. mRNA was extracted using the EZ-10 DNAaway RNA Miniprep Kit (Bio Basic Canada INC) and cDNA was prepared using the High-Capacity cDNA Reverse Transcription Kit with
RNase Inhibitor (Life Technologies). mRNA expression was determined by quantitative real-time PCR (qRT-PCR) as described in the Supplementary Materials and Methods.

Western blot analysis

Cells were treated with pIC/PPHAffibody (2 μg/mL) for 4 or 8 h. Proteins were extracted using NP-40 lysis buffer and analyzed by western blot using primary antibodies against cleaved caspase-3, caspase-3, tubulin, and PARP (1:1000, Cell Signaling). Experiments were repeated at least 3 times.

Apoptosis

BT-474 or MDA-MB-231 cells (1.5 x 10^5/well) were plated in a 24-well plate in duplicates. Cells were treated with pIC/PPHAffibody (2 μg/mL) for 4 and 8 h, stained with Annexin V/Propidium iodide (PI) (MLB MEBCYTO apoptosis kit) and analyzed using flow cytometry. Each experiment was repeated at least 3 times.

Quantification of RANTES, IP-10 and GRO-α by ELISA

BT-474 or SK-BR-3 cells (1 x 10^4 cells/well) were treated with pIC/PPHAffibody. 48 h later, 100-200 μl of medium were collected and subjected to RANTES, IP-10 or GRO-α ELISA assays (PeproTech) and read using a Bio-TeK Synergy H1 plate reader.

PBMC co-culture

BT-474^{GFP/LUC+} cells (1 x 10^4 cells/well) were plated in 96-well plates, in triplicate. After 24 h, the cells were treated with pIC/PPHAffibody for 48 h. PBMCs (5 x 10^5/well) were added to the culture for an additional 48 h. Luciferase activity, which corresponds to the
number of live BT-474^{GFP/LUC} cells, was measured using the Luciferase Assay system (Promega) and a Luminoskan Ascent Microplate Luminometer (Thermo Scientific, France).

PBMC medium transfer

BT-474 cells (1.5 x 10⁵ cells/well) were plated in 24-well plates. After 24 h, the cells were treated with pIC/PPHAffibody or pIC/PPCys for another 24 h. Medium from duplicate wells was combined and transferred to a 6-well plate, and PBMCs (1.3 x 10⁷ cells/well) were added for 12 additional hours. RNA was isolated from PBMCs.

Animals, tumor growth, and treatment

MCF-7-HER2 model: 17 β-estradiol pellets (Innovative Research of America, Inc) were inserted s.c. into 6-8 week old female athymic Nude-Foxn1nu mice (Harlan Laboratories) 1 day before cell injection. 5 x 10⁶ MCF-7-HER2 cells were injected into the mammary fat pad of each mouse (n = 6–9/group). Mice were randomized and divided into treatment groups when the tumors reached an average size of 100 mm³. pIC/PPHAffibody (1 mg/Kg) was injected intravenously (i.v.) every 24 h. Trastuzumab (10 mg/Kg) was injected intraperitoneally (i.p.) once a week.

RENCA-HER2 model: RENCA-HER2 cells (5 x 10⁶) were injected subcutaneously into the right flanks of immunocompetent BALB/c female mice (6-8 week old; Harlan Laboratories). Mice were randomized into treatment groups (n = 6–8/group) when tumors
reached 200 mm3 and injected i.v. with pIC/PPHAffibody (0.25 mg/kg) every 24 h for 12 days.

For the immune-cell depletion experiment, mice were randomized into treatment groups when tumors reached 100 mm3. NK cells were depleted by antibody to asialo-GM1 (50 µl/mouse, i.p., Wako Chemicals, Richmond, VA), starting 2 days before pIC/PPHAffibody treatment, again on the day of the treatment (d 0) and every 4 days thereafter. CD8 cells were depleted using anti-m-Lyt-2.2 (CD8a) (Bio X Cell, West Lebanon, NH) i.p. at 0.1 mg/mouse, starting 2 days before pIC/PPHAffibody treatment and every 2 days thereafter. Depletion of both NK and T cells was confirmed using flow cytometry (data not shown). pIC/PPHAffibody (0.25 mg/kg) was administered i.v. every 24 h.

MMTV-huHER2 model: Tumor cells were isolated from spontaneous mammary tumors arising in MMTV-huHER2 transgenic mice (32). Single cell suspensions derived from 3 transgenic mice with MMTV-huHER2 tumors were mixed with matrigel 1:1 (vol/vol) (BD Bioscience) and injected into the mammary fat pads of immunocompetent FVB, 6-8 week old female mice (Harlan Laboratories) ($n = 6$/group). When tumors reached 100 mm3, the mice were randomized and treated for 12 days. Mice were injected i.v. with pIC/PPHAffibody (0.25 mg/kg) every 24 h.

All animal protocols were approved by the Hebrew University of Jerusalem Institutional Animal Care and Use Committee.
Syngeneic mouse model of MMTV-HER2 Founder #5 (Fo#5): The mammary tumors were propagated into the thoracic mammary fat pads of female FVB mice (Charles River Laboratories, Hollister, CA). When tumors reached a volume of 100-300 mm³, animals were randomized \(n = 9 \) and received daily intravenous dose of PPHAffibody (0.215 mg/kg), or PPHAffibody (0.215 mg/kg) plus pIC (0.25 mg/kg) for up to 15 consecutive days. The fit curve of the tumor volumes for each group was generated using nonlinear mixed modeling and was plotted over time. The median time to tumor progression of 1000 mm³ was estimated with Kaplan-Meier analysis. Studies were performed in compliance with National Institutes of Health guidelines for the care and use of laboratory animals and were approved by the Institutional Animal Care and Use Committee (IACUC) at Genentech, Inc.

Tumor xenografts were measured with calipers and tumor volumes were determined using the formula: length × width²/2, and plotted as means ±SEM.

Immune cell infiltration

BALB/c female mice were inoculated with RENCA-HER2 cells (5 x 10⁶). Mice \(n = 4-5 \) were treated for 4 days with pIC/PPHAffibody (i.v.). On day 5, tumors were excised and digested using collagenase type IV and DNase (Roche). Cells were washed, counted and stained with antibodies against NKp46, CD45.2, CD3 and CD8 (Miltenyi Biotech). Flow cytometry was performed as above.
Statistical analysis

Statistical significance of differences between groups was determined by applying an unpaired Student t-test (Prism software). Kaplan-Meier analysis, (nonparametric log-rank test, JMP software) was used to determine time to tumor progression.

P values <0.05 were considered significant.

Results

Targeted delivery of pIC/PPHAffibody induced HER2-dependent tumor cell death

To determine the effect of PPHAffibody on pIC delivery and the induction of targeted tumor cell death, several breast cancer cell lines with differential HER2 expression were utilized. Expression of HER2 on MDA-MB-231, MCF-7, SK-BR-3, and BT-474 cells had been determined (33, 34) to be approximately 8×10^3, 1.5×10^4, 1.9×10^6, and 1×10^6 receptors per cell, respectively. pIC/PPHAffibody efficiently induced the death of HER2-overexpressing breast cancer cells as compared to low HER2-expressing cells, in a concentration-dependent manner (Fig. 1A). Less than 20% of BT-474 and SK-BR-3 cells survived treatment with $2 \mu g/mL$ pIC/PPHAffibody, whereas no effect was observed for MDA-MB-231 ($***P <0.001$). The survival of MDA-MB-231 cells was not due to lack of TLR3 expression (Supplementary Fig. S1) but rather to lack of HER2 overexpression.
Delivery of pIC with a non-targeted vector, polyethyleneimine–polyethyleneglycol–cysteine (PPCys), did not induce cell death in any of the cell lines.

Specific binding and time-dependent internalization of the pIC/PPHAffibody into BT-474 were observed by confocal microscopy (Fig. 1B). After 2 hours of treatment with pIC/PPHAffibody the complex was bound to the cell membrane of BT-474 cells, and was internalized after 4 hours. However, the complex did not bind or internalize into MDA-MB-231 cells (Fig. 1B) even after longer incubation (data not shown). Thus, pIC was selectively delivered into HER2-overexpressing cells, and cell death was induced in a HER2-dependent manner.

Many HER2-positive cancer patients are either resistant to trastuzumab before treatment or develop resistance afterward. Comparing the efficacy of pIC/PPHAffibody treatment to trastuzumab, we found that pIC/PPHAffibody was more potent than trastuzumab in inducing cell death in BT-474 and SK-BR-3 cells (Fig. 1C). The survival of trastuzumab-resistant BT-474-derived cells (BT-474R cells), which maintain HER2-overexpression (31), was significantly decreased by pIC/PPHAffibody treatment. (Fig. 1D).

pIC/PPHAffibody induced apoptosis in HER2-overexpressing cells

To elucidate whether pIC/PPHAffibody treatment induces apoptotic cell death, cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP) were analyzed by western blot (Fig. 2A). A slight apoptotic effect was detected at 4 hours of treatment with pIC/PPHAffibody (2 µg/mL), with more extensive cleavage of caspase-3 and PARP after 8 hours, in both BT-474 and SK-BR-3 cells (Fig. 2A). Treatment of BT-474 cells with
pIC/PPHAffibody for 4 or 8 hours led to a robust increase in Annexin V–positive cells, as compared to untreated or MDA-MB-231 cells (Fig. 2B). In contrast, cells treated with pIC/PPCys showed little Annexin V staining (Fig. 2B). These results indicated that pIC/PPHAffibody induces apoptotic cell death, and that the decreased survival of cells with high amounts of HER2 receptor was due to apoptosis.

Treatment with pIC/PPHAffibody promotes a pro-inflammatory effect

Escape of immune surveillance is a hallmark of cancer (16). Accordingly, to generate an effective therapy it is essential to re-activate immune surveillance against the tumor. pIC/PPHAffibody induces secretion of type I IFN and other cytokines, all of which are associated with immune cell recruitment and activation (35). Therefore we examined whether targeted delivery of pIC via PPHAffibody into HER2-overexpressing cells could induce antitumor cytokines (Fig. 3A). Profound increases in IFNα and IFNβ mRNA expression were seen in BT-474 and SK-BR-3 cells after treatment with pIC/PPHAffibody (Fig. 3). In addition, treatment of BT-474 with PPCys did not induce an increase in type I IFN secretion (Supplementary Fig. S2A).

Several pro-inflammatory chemokines that are induced by pIC are known to promote lymphocyte recruitment, including IP-10, RANTES (CCL5), and GRO-α (35-37). Additionally, IP-10 not only promotes T-cell recruitment, but also induces the generation of effector T cells (38). To determine whether targeted delivery of pIC induces the expression and secretion of these cytokines, qRT-PCR and ELISA assays were performed. mRNAs for IP-10, RANTES, and GRO-α were strongly induced in BT-474 cells treated with pIC/PPHAffibody, whereas almost no stimulation was induced by
pIC/PPCys (Supplementary Fig. S2B). ELISA assays showed that treatment with pIC/PPHAffibody increased IP-10, RANTES and GRO-α secretion in both BT-474 cells and SK-BR-3 cells. At 2 μg/mL pIC, lower concentrations of cytokines were observed, due to the rapidity of cell death at this concentration, which precludes cytokine accumulation (Fig. 3C and D respectively). In MCF-7 cells, pIC/PPHAffibody induced IP-10 secretion but to a lesser extent than in BT-474 and SK-BR-3 cells, whereas in MDA-MD-231 cells IP-10 did not change (Supplementary Fig. S2C). RANTES and GRO-α were undetectable in both MCF-7 and MDA-MD-231 (data not shown).

Induction of PBMC-mediated killing after pIC/PPHAffibody treatment.

Having demonstrated that pIC/PPHAffibody treatment induces the secretion of activators of the innate and adaptive immune responses, we next tested whether pIC/PPHAffibody treatment could induce lymphocyte recruitment. Medium was collected from BT-474 or SK-BR-3 cells treated with pIC/PPHAffibody for 48 hours and placed in the bottom of a Boyden chamber. PBMCs were placed in the upper chamber. After 4 hours, lymphocyte chemotaxis was increased by ≥3-fold (Fig. 4A). Thus, treatment with pIC/PPHAffibody induced cytokine secretion, which in turn promoted lymphocyte chemotaxis.

To test whether pIC/PPHAffibody treatment increased PBMC cytotoxicity, BT-474GFP/LUC+ cells were first treated with pIC/PPHAffibody for 48 hours and then cocultured with PBMCs for 48 additional hours. The addition of PBMCs led to a strong decrease in BT-474GFP/LUC+ cell survival (Fig. 4B). Increased IFNγ mRNA expression was seen in PBMCs cultured with medium from pIC/PPHAffibody-treated BT-474 cells, but not in PBMCs that received medium from cells treated with pIC/PPCys (Fig. 4C).
Our results suggest that the treatment of HER2-overexpressing cells with pIC/PPHAffibody activated PBMCs to further attack any remaining tumor cells, in accordance with our previous findings with EGFR-overexpressing tumors (17).

Upregulation of MHC-I by pIC/PPHAffibody treatment

Downregulation of MHC-I is one of the mechanisms associated with tumor immune escape and decreased lysis by cytotoxic T cells. pIC promotes MHC-I expression and antigen presentation (39-42). To establish whether pIC/PPHAffibody treatment could induce upregulation of MHC-I expression in HER2-overexpressing cells, BT-474 and SK-BR-3 cells were treated with pIC/PPHAffibody for 24 hours and subjected to flow cytometry. pIC/PPHAffibody treatment greatly increased HLA class I surface expression on both BT-474 and SK-BR-3 cells as compared to untreated cells (Fig. 5). Thus, treatment with pIC/PPHAffibody can potentiate the detection and activation of tumor infiltrating T cells against HER2-overexpressing tumors.

pIC/PPHAffibody treatment inhibits tumor growth in vivo

To investigate whether targeted delivery of pIC can abrogate in vivo tumor growth, HER2-overexpressing MCF-7 cells (MCF-7-HER2) were inoculated into nude mice. The rate of tumor growth was significantly slower in mice treated with pIC/PPHAffibody than in trastuzumab treated or control mice (*P <0.05, Fig. 6A).

Since our in vitro studies showed that pIC/PPHAffibody induced the recruitment and activation of immune cells against treated tumor cells, we hypothesized that pIC/PPHAffibody treatment would be more effective in immunocompetent mice.
Immunocompetent BALB/c mice were inoculated subcutaneously with HER2-overexpressing RENCA cells (RENCA-HER2). Although pIC/PPHAffibody treatment did not have a strong effect on RENCA-HER2 cell survival in vitro (supplementary Fig. S3A), the growth of RENCA-HER2 tumors in BALB/c mice was suppressed (***P <0.001, Fig. 6B). Moreover, immunohistochemistry for cleaved caspase-3 demonstrated strong induction of apoptosis (Supplementary Fig. S3B). To confirm that the profound inhibition of tumor growth was not tumor type specific, we tested the efficacy of pIC/PPHAffibody treatment in another immunocompetent model, MMTV-huHER2 mammary tumor transplants. Tumor cells were isolated from spontaneous mammary tumors arising in MMTV-huHER2 transgenic mice (32) and were inoculated into the mammary fat pad of FVB mice. As in the BALB/c model, tumor growth was inhibited by pIC/PPHAffibody (**P <0.01; Fig. 6C). In both tumor models a significant survival benefit was achieved in mice treated with pIC/PPHAffibody.

We also assessed the effects of pIC/PPHAffibody on the infiltration of immune cells into the RENCA-HER2 tumors by flow cytometry (Fig. 6D). Treatment with pIC/PPHAffibody significantly increased NK cell (21.5% control vs 32.6% treated) and CD8⁺ T-cell (13.8 % control vs 23.9 % treated) infiltration into the tumors (**P <0.01). When NK or CD8⁺ T cells were depleted from the RENCA-HER2 mice treated with pIC/PPHAffibody, tumor growth increased in both of the depleted groups as compared to mice treated with pIC/PPHAffibody alone (pIC/PPHAffibody alone vs pIC/PPHAffibody-NK or pIC/PPHAffibody-CD8⁺, *P <0.05, Fig 6E). These results strongly support our hypothesis that pIC/PPHAffibody not only directly causes tumor cell...
apoptosis, but also engages the innate and adaptive immune responses to repress tumor growth.

To determine whether pIC/PPHAffibody treatment could be used to treat trastuzumab-resistant tumors in which the extracellular domain of HER2 was shed (43), we used the trastuzumab-resistant syngeneic Fo5 mouse model, derived by serial tumor transplantation from MMTV-HER2 Founder #5 (32, 43). These tumors express p95HER2 and the mice have high amounts of circulating HER2 extracellular domain (43). Treatment with pIC/PPHAffibody significantly increased the time to tumor progression (Fig. 7A). The median time to progression for treated mice was 14.9 days, compared to 7.2 days in controls (log-rank $P = 0.0165$). Moreover, a significant reduction in tumor volume was also observed (*$P < 0.01$; Fig. 7B). These results indicate that pIC/PPHAffibody has potential as a treatment even for trastuzumab-resistant patients.

Discussion

Early diagnosis and targeted treatments have improved the progression-free survival of breast cancer patients with HER2-overexpression. Yet, many patients relapse and have limited treatment options. This motivated us to seek new therapeutic modalities that would effectively target HER2-overexpressing tumors. Here we introduce a targeted therapy that selectively delivers synthetic dsRNA, pIC, into HER2-overexpressing breast tumor cells, to induce targeted cell killing and promote an immune response against the tumor. Although a potent activator of the adaptive and innate immune responses (44), pIC caused severe toxicity when used systemically as naked pIC in clinical trials (45, 46).
The targeted delivery of pIC into HER2-overexpressing tumors is expected to abrogate the toxicity observed in previous trials, while stimulating an overall therapeutic effect.

The internalization of pIC into HER2-overexpressing tumor cells stimulated the activation of pro-apoptotic and pro-inflammatory processes, specifically in HER2-overexpressing cells. In contrast to trastuzumab and T-DM1 (43), the kinetics of cell death caused by pIC/PPHAffibody were very rapid; caspase-3 and PARP cleavage were detected after 4-8 hours and the cells were almost completely eradicated after 72 hours of treatment. Treatment with pIC/PPHAffibody led to the expression of antiproliferative (e.g., IFN) and immunostimulatory cytokines (e.g., IP-10, GRO-α, RANTES), triggering immune cell recruitment and activation and leading to extensive cancer cell killing in vitro.

There are several mechanisms whereby HER2-targeted pIC could restore anti-tumor immune surveillance. Tumor-infiltrating lymphocytes may be incompletely activated, anergic or functionally defective (47). pIC/PPHAffibody led to the induction of IFNα/β and additional cytokines that can activate various cells of the innate system, such as NK, macrophages, and antigen presenting cells, which in turn activate the adaptive immune system (48). Type I IFN can also directly induce the adaptive immune system by regulating T-cell survival, proliferation, and activation (49, 50). An additional mechanism is the enhanced MHC class I expression evinced by pIC/PPHAffibody, which may facilitate the activation of T cells against the tumor, thus leading to enhanced tumor killing.

Our in vivo data underscore the important roles of the innate and adaptive immune systems in the elimination of tumors by pIC/PPHAffibody. Despite their low sensitivity
to pIC/PPAffibody in vitro, RENCA-HER2 tumors grown in immunocompetent mice were strongly inhibited by pIC/PPAffibody treatment. Tumor infiltrating lymphocytes are predictive of improved prognosis in breast cancer (51). HER2-targeted pIC generated an influx of tumor-infiltrating NK and CD8+ T-cells whose depletion, in combination with pIC/PPAffibody treatment, resulted in an increase in tumor growth.

pIC/PPAffibody was also effective against two models derived from MMTV–huHER2 tumors, including a trastuzumab-resistant tumor model, Fo#5. Although the Fo#5 derived, trastuzumab-resistant tumors have been shown to express the p95HER2 receptor as well as the full-length receptor, pIC/PPAffibody treatment efficiently increased PFS of the mice, indicating that pIC/PPAffibody can be used to target trastuzumab-resistant tumors. In contrast to the immunocompetent models, MCF-7-HER2 tumors were significantly less sensitive in vivo, where they were propagated in nude mice with an impaired T-cell response. Our results in immunocompetent mice elucidate the immune stimulatory effect of HER2-targeted pIC.

The effects of HER2-targeted pIC – namely the attraction of immune cells to the tumor, the activation of immune cells and the stronger presentation of tumor-specific antigens by the induced expression of MHC-I – should strongly enhance the efficacy of most cancer immune therapies.

In conclusion, we present a novel vector for targeting the delivery of pIC to HER2-positive tumors, including trastuzumab-resistant tumors. We show that HER2-targeted pIC treatment caused tumor cell apoptosis and mobilized immune surveillance against the tumor. Moving this therapy to the clinic is of high importance as this modality
is expected to improve patients' outcomes, reducing the morbidity and mortality associated with HER2-overexpression in breast and other tumors.

Acknowledgments

We would like to thank Dr. M. Lebendiker (Wolfson Protein Purification Unit at HUJI), Dr. Naomi Melamed-Book (Confocal Microscope Unit at HUJI) and Aviva Petcho for their generous assistance.

References

22. Jeung HC, Moon YW, Rha SY, Yoo NC, Roh JK, Noh SH, et al. Phase III trial of adjuvant 5-fluorouracil and adriamycin versus 5-fluorouracil, adriamycin, and polyadenylic-
35. Currie AJ, van der Most RG, Broomfield SA, Prosser AC, Tovey MG, Robinson BW. Targeting the effector site with IFN- alphabeta-inducing TLR ligands reactivates tumor-resident CD8 T cell responses to eradicate established solid tumors. J Immunol 2008;180:1535-44.

44. Ngoi SM, Tovey MG, Vella AT. Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. J Immunol 2008;181:7670-80.

Figure legends

Figure 1.
Selective delivery of pIC/PPHAffibody decreases the survival of HER2-overexpressing cells. **A**, Survival of BT-474, SK-BR-3, MCF-7, and MDA-MB-231 cells treated with pIC/PPHAffibody or pIC/PPCys at the indicated concentrations for 72 h (**P < 0.001 BT-474 vs MDA-MB-231 or for pIC/PPHAffibody vs pIC/PPCys**). **B**, Internalization of pIC/PPHAffibody into BT-474 and MDA-MB-231 after 2 and 4 hours of treatment (described in Methods) as shown by confocal microscopy. Pictures were taken at 10× magnification, scale bar 4 μm. **C**, Survival of BT-474 and SK-BR-3 cells following treatment with pIC/PPHAffibody or trastuzumab. **D** Survival of BT-474 trastuzumab-resistant cells following treatment with pIC/PPHAffibody (**P < 0.01 2 μg/mL vs untreated cells**). In **(A), (C) and (D)**, cell survival is presented as the percentage of untreated (UT) cells of the same cell line. Error bars indicate standard deviation. Representative figures of at least 3 independent experiments.

Figure 2.

pIC/PPHAffibody induces cellular apoptosis. **A**, Western blot analysis of PARP and caspase-3 cleavage in BT-474 and SK-BR-3 cells treated with 2 μg/mL pIC/PPHAffibody for 4 and 8 hours, Tubulin served as a loading control. UT, untreated. **B**, BT-474 and MDA-MB-231 cells were treated with pIC/PPHAffibody or pIC/PPCys (2 μg/mL) for 4 and 8 hours. Annexin V–FITC and PI-PE binding were measured by flow cytometry. Numbers represent the percentage of cells in the respective quadrants. Representative figures of at least 3 independent experiments.

Figure 3.

pIC/PPHAffibody leads to the induction of pro-inflammatory cytokine expression.
qRT-PCR analysis of type I IFN expression in (A) BT-474 and (B) SK-BR-3 cells treated with pIC/PPHAffibody (1 μg/mL) for 2 or 4 hours. Data are expressed as fold change (relative quantification (RQ)) in IFNα or IFNβ expression in pIC/PPHAffibody-treated samples, normalized to GAPDH and compared to untreated (UT) cells. Error bars represent ± RQ_{max}/RQ_{min}. For IFNβ, log_{10} scale is used for the y-axis. ELISA assays for IP-10, RANTES and GRO-α were performed on supernatants of (C) BT-474 and (D) SK-BR-3 cells treated for 48 hours with pIC/PPHAffibody at the indicated pIC concentrations. Each assay was conducted in triplicate and data are presented as mean concentration + S.D.

Figure 4.

A, PBMC chemotaxis towards medium from BT-474 and SK-BR-3 cells treated with pIC/PPHAffibody at the indicated concentrations for 48 h. B, Luciferase assay showing survival of BT-474^{GFP/LUC+} cells treated with pIC/PPHAffibody incubated with and without PBMCs. (Survival is % of untreated cells). C, qRT-PCR analysis of IFNγ in PBMCs cultured in medium from BT474 cells treated with pIC/PPHAffibody. Representative data from at least 3 independent experiments.

Figure 5.

pIC/PPHAffibody treatment induces upregulation of HLA class I expression. Flow cytometry analysis of MHC-I surface expression in BT-474 and SK-BR-3 cells treated with pIC/PPHAffibody compared to untreated cells. Representative data from at least 3 independent experiments.
Figure 6.

Antitumor activity of pIC/PPHAffibody on HER2-overexpressing tumors in immunodeficient and immunocompetent mouse models. **A**, MCF-7-HER2 cells were inoculated into the mammary fat pads of nude mice. Mice bearing ~100 mm3 tumors were divided into 3 different groups; control (untreated), trastuzumab and pIC/PPHAffibody or were left untreated. ($^*P<0.05$, pIC/PPHAffibody vs. control). **B**, Effect of pIC/PPHAffibody on RENCA-HER2 tumors (s.c.) in BALB/c mice ($^{***}P<0.001$, treatment vs. untreated control). **C**, Tumor cells derived from established MMTV-huHER2 tumors were inoculated into the mammary fat pads of FVB mice. Treatment with pIC/PPHAffibody began when tumors reached ~200 mm3 ($^{*}P<0.01$, treatment vs. untreated control). (D) RENCA-HER2 cells were inoculated s.c. into BALB/c mice ($n=5–7$). When the tumors reached ~150 mm3, mice were treated for 4 days with pIC/PPHAffibody. Tumors were analyzed by flow cytometry. NK cells (NKp46/CD45.2$^+$) and CD8 T-cells (CD8$^+/CD3^+$) were gated out of total live cells. Representative dot plots are shown. ($^{*}P<0.01$, treatment vs. control). (E) RENCA-HER2 cells were inoculated s.c. into BALB/c mice. When the tumors reached 100 mm3, the mice were divided into four treatment groups ($n=6–7$): control (untreated); pIC/PPHAffibody; CD8 depleting antibody (i.p. every 2 days) + pIC/PPHAffibody; NK depleting antibody (i.p. every 4 days) + pIC/PPHAffibody. pIC/PPHAffibody was administered i.v. every 24 hours. ($^*P<0.05$, pIC/PPHAffibody vs. NK or CD8 depleted mice). Data are expressed as mean ± S.E.M.
Figure 7.

Efficacy of pIC/PPHAffibody on a trastuzumab-resistant mouse model. Fo5 mammary tumors were propagated into the thoracic mammary fat pad of female FVB mice. When tumors reached a volume of 100-300 mm3 mice were treated with pIC/PPHAffibody. **A,** Progression-free survival analysis (*$P = 0.0165,$ pIC/PPHAffibody vs. control). **B,** Tumor volume (*$P <0.05,$ control vs. pIC/PPHAffibody-treated mice). Data are expressed as mean ± S.E.M.
Figure 1

A

Cell survival (%) on the x-axis and pIC/PPHAffibody (µg/mL) on the y-axis. The bars represent different concentrations of pIC/PPHAffibody (0.1, 0.5, 1, 2 µg/mL) and pIC/PPCys (0.1, 0.5, 1, 2 µg/mL) for BT-474, SK-BR-3, MCF-7, and MDA-MB-231 cell lines. The graphs show a significant difference in cell survival among the different cell lines.

B

Two images showing cellular staining for MDA-MB-231 and BT-474 cell lines at 2h and 4h time points. The images are labeled with "***" indicating a significant difference.

C

Bar graphs for BT-474 and SK-BR-3 cell lines showing cell survival (%) at different concentrations (0.25, 1.25, 2.5, 5 nM) of Trastuzumab and pIC/PPHAffibody. The graphs show a significant difference in cell survival.

D

Bar graphs for MCF-7 and MDA-MB-231 cell lines showing cell survival (%) at different concentrations (0.1, 0.5, 1, 2 µg/mL) of pIC/PPHAffibody. The graphs show a significant difference in cell survival.
Figure 2

A

<table>
<thead>
<tr>
<th></th>
<th>BT-474</th>
<th>SK-BR-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspase-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved caspase-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubulin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>pIC/PPHAffibody</th>
<th>pIC/PPCys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UT 4h 8h UT 4h 8h</td>
<td>UT 4h 8h</td>
</tr>
<tr>
<td>Annexin V/FITC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>3.23 3.05 3.57 2.73 2.04</td>
<td>3.57 2.73 2.04</td>
</tr>
<tr>
<td>BT-474</td>
<td>4.58 35.2 44.4 8.78 10.7</td>
<td>44.4 8.78 10.7</td>
</tr>
</tbody>
</table>

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Downloaded from cancerimmunolres.aacrjournals.org on May 30, 2021. © 2016 American Association for Cancer Research.
Figure 3

A

B

C

D
Figure 5

BT-474

SK-BR-3

MHC-I

Count

0 10^2 10^3 10^4 10^5

0 10^0 10^2 10^3 10^4 10^5

Downloaded from cancerimmunolres.aacrjournals.org
Figure 7

A. Progression-Free Survival

B. Tumor volume (mm3)

- Control
- pIC/PPHAffibody
- PPHAffibody

Time to Progression (Days)

Tumor volume (mm3)

Time (days)
HER2-targeted polyinosine/polycytosine therapy inhibits tumor growth and modulates the tumor immune microenvironment

Maya Zigler, Alexei Shir, Salim Joubran, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-15-0203

Supplementary Material
Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2016/05/28/2326-6066.CIR-15-0203.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/early/2016/05/28/2326-6066.CIR-15-0203. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.