WHAT WE'RE READING

A Sampling of Highlights from the Literature

IN THE SPOTLIGHT

Exosomal lncRNA-Mediated Intercellular Communication Promotes Glioblastoma Chemoresistance

Weixi Zhao and Qi Xie

See related article, p. 1383

REVIEW

Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited

Chenfeng Han, Minmin Ge, Ping-Chih Ho, and Lianjun Zhang

RESEARCH ARTICLES

Glioblastoma Cell–Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance

Ziwei Li, Xiangqi Meng, Pengfei Wu, Caijun Zha, Bo Han, Lulu Li, Nan Sun, Tengfei Qi, Jie Qin, Yangong Zhang, Kaifu Tian, Shupeng Li, Changxiao Yang, Lejia Ren, Jianguang Ming, Pandeng Wang, Yifei Song, Chuanlu Jiang, and Jinquan Cai

The authors find glioblastoma cells transfer the long noncoding RNA lnc-TALC to microglia via exosomes. Lnc-TALC activates an ENO1/p38 MAPK pathway that results in C5 production, which promotes chemotherapy resistance.

The data identify novel therapeutic strategies for glioblastoma.

See related Spotlight, p. 1372

Effective Treatment of Established Bone Metastases Can Be Achieved by Combinatorial Osteoclast Blockade and Depletion of Granulocytic Subsets

Aude-Hélène Capietto, Seunghyun Lee, David Clever, Emily Eul, Haley Ellis, Cynthia X. Ma, and Roberta Faccio

Established tumors in bone can be refractory to osteoclast blockade and are protected from chemotherapeutic agents. The data highlight that bone metastases can be effectively treated by combining osteoclast blockade and anti-Gr1 to deplete Gr1+ cell subsets.

The SETDB1–TRIM28 Complex Suppresses Antitumor Immunity

Jianhuang Lin, Dajiang Guo, Heng Liu, Wei Zhou, Chen Wang, Iris Müller, Andrew V. Kossenkov, Ronny Drapkin, Benjamin G. Bitler, Kristian Helin, and Rugang Zhang

Using a CRISPR-Cas9 screen, the authors identify the SETDB1–TRIM28 complex as a promising epigenetic target to simultaneously activate cGAS–STING signaling and upregulate PD-L1 expression to enhance the antitumor effects of anti-PD-L1 immune checkpoint blockade.

Effective Treatment of Established Bone Metastases Can Be Achieved by Combinatorial Osteoclast Blockade and Depletion of Granulocytic Subsets

Aude-Hélène Capietto, Seunghyun Lee, David Clever, Emily Eul, Haley Ellis, Cynthia X. Ma, and Roberta Faccio

Established tumors in bone can be refractory to osteoclast blockade and are protected from chemotherapeutic agents. The data highlight that bone metastases can be effectively treated by combining osteoclast blockade and anti-Gr1 to deplete Gr1+ cell subsets.

PD-1/PD-L1–Associated Immunoarchitectural Patterns Stratify Pancreatic Cancer Patients into Prognostic/Predictive Subgroups

Eva Karamitopoulou, Andreas Andreou, Aurélie Pahud de Mortanges, Marianne Tinguely, Beat Gloor, and Aurel Perren

Four PD-1/PD-L1 expression patterns are identified in samples from patients with MSS pancreatic cancer. Each pattern correlates with distinct immune composition and other tumor microenvironment features, as well as with patient outcomes, highlighting the heterogeneity of immunologic responses.
Conditional PD-1/PD-L1 Probody Therapeutics Induce Comparable Antitumor Immunity but Reduced Systemic Toxicity Compared with Traditional Anti–PD-1/PD-L1 Agents
Hikmat H. Assi, Chihunt Wong, Kimberly A. Tipton, Li Mei, Ken Wong, Jennifer Razo, Chanty Chan, Bruce Howing, Jason Sagert, Michael Krimm, Linnea Diep, Andrew Jang, Margaret T. Nguyen, Nicole Lapuyade, Victoria Singson, Ruth Villanueva, Madan Paidhungat, Shouchun Liu, Vangipuram Rangan, Olga Vasiljeva, James W. West, Jennifer H. Richardson, Bryan Irving, Dylan Daniel, Marcia Belvin, and W. Michael Kavanaugh

Checkpoint inhibitor immunotherapy can be associated with severe immune-related adverse events that can limit therapeutic efficacy. The authors show that Probody therapeutics effectively localize checkpoint inhibition to sites of tumor growth, thereby reducing toxicities and maintaining therapeutic efficacy.

Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses
Xia Bu, Vikram R. Juneja, Carol G. Reynolds, Kathleen M. Mahoney, Melissa T. Bu, Kathleen A. McGuire, Seth Maleri, Ping Hua, Baogong Zhu, Sarah R. Klein, Edward A. Greenfield, Philippe Armand, Jerome Ritz, Arlene H. Sharpe, and Gordon J. Freeman

Reagents for specifically detecting PD-1 signaling are lacking. Here, an antibody for phosphorylated (phospho)—PD-1 was developed and can effectively detect T-cell PD-1 signaling after binding PD-L1. Data highlight the potential use of phospho—PD-1 to track PD-1-based immunotherapy responses.

CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function
Mariona Cabo, Sara Santana-Hernández, Marcel Costa-García, Anna Rea, Roberto Lozano-Rodríguez, Michelle Ataya, Francesc Balaguer, Manel Juan, Maria C. Ochoa, Silvia Menéndez, Laura Comerma, Ana Rovira, Pedro Berraondo, Joan Albanell, Ignacio Melero, Miguel López-Botet, and Aura Muntasell

TGFβ directly inhibits cytotoxic T and NK lymphocytes in the tumor microenvironment. In this study, CD137 is identified as an actionable target for enhancing NK-cell persistence and function by counteracting TGFβ suppression.

γδ T Cells Support Antigen-Specific αβ T cell–Mediated Antitumor Responses during BCG Treatment for Bladder Cancer
Niannian Ji, Neelam Mukherjee, Zhen-Ju Shu, Ryan M. Reyes, Joshua J. Meeks, David J. McConkey, Jonathan A. Gelfond, Tyler J. Curiel, and Robert S. Svatek

γδ T cells are shown to be required for boosting antitumor responses of conventional antigen-specific αβ T cells during BCG treatment of bladder cancer. Rapamycin enhances BCG efficacy, supporting the use of the combination for treating bladder cancer.
Cancer Immunology Research

9 (12)

Updated version
Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/9/12

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerimmunolres.aacrjournals.org/content/9/12.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.