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Figure 4.

ICV-infused CAR T cells exhibit similar trafficking but superior proliferation and persistence potential when compared with IV-delivered CAR T cells. A, CD19-CAR T
cells were transduced with EGFP-ffluc and expanded in vitro. NSG mice were implanted SC with Daudi lymphoma in the right flank. Nineteen days after tumor
engraftment, 2 x 108 EGFP+ffluc+ CAR T cells were administered ICV or IV, and CAR T-cell proliferation was determined by measuring bioluminescence by live
imaging every other day (B—C). The same scale was used for each time point. D-E, Blood was collected at different time points after CAR T-cell infusion, and T-cell
(human CD45") and CAR™ T-cell (EGFR™) levels were detected by flow cytometry. Mean £SDs from 5 mice per group are presented. Significance was determined
with the Mann-Whitney test; *, P < 0.05 and ***, P < 0.001. Experiments were repeated twice, and representative data are presented.
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Figure 5. A
CSF conditions CAR T cells for
enhanced memory and reduced
exhaustion. A, CD19-CAR T cells were
cultured in RPMI or human CSF for
48 hours and subjected to RT-PCR
array analysis. Fold changes of genes
in CSF over RPMI of >1.3 are shown.
N=4donors.B, CART cells cultured in
CSF or RPMI for 48 hours were stim-
ulated overnight with Daudi lympho-
ma cells. Cytokines released into the
supernatant were measured with
cytometric bead array using the Bio-
Plex Human Cytokine 17-Plex Panel.
Mean + SDs from 6 replicates are
presented. CSF and RPMI (logarithm
transformation) were compared by
the Student ¢ test; ns, not significant;
** P<0.0T;and ***,P<0.001.C,CART
cells were activated, transduced, and
expanded for 13 days in modified RPMI
(60 mg/dL glucose; 2.8 mEq/L potas-
sium) or in regular RPMI (200 mg/dL
glucose; 5.3 mEq/L potassium). CAR T
cells cultured in modified RPMI were
subsequently cultured in regular RPMI
(switched) for 14 days. Percentages
(mean + SD) of CD28-positive cells in
CAR-gated populations from N = 4
different human donors are presented.
Linear mixed models were used to
compare the three conditions based
on repeated measures from the same
donor; *, P < 0.05; **, P < 0.01; and
*** P < 0.001. D, CAR T cells were
cultured in modified or regular RPMI,
stimulated with Daudi cells for 6 hours,
and assessed for degranulation. Per-
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cytokines upon in vitro stimulation with Daudi lymphoma cells
compared with RPMI-cultured CAR T cells (Fig. 5B).

To control for differences between CSF and regular RPMI, we
performed experiments with modified RPMI medium that mimics the
levels of glucose and potassium in CSF (60 mg/dL glucose; 2.8 mEq/L
potassium). CD19-CAR T cells generated in modified RPMI showed
lower fold expansion than cells generated in regular RPMI (Supple-
mentary Fig. S7A), which may be a mechanism that prevents differ-
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entiation and maintains memory. In support of this, CD19-CAR
T cells expanded in modified RPMI expressed elevated levels of
memory marker CD28 compared with cells generated in regular RPMI
(P<0.001; Fig. 5C) and activation marker CD25 (P <0.01), but did not
show change in the exhaustion markers LAG3, Tim3, and KLRG
(Supplementary Fig. S7B and S7C). Remarkably, these cells sustained
significantly higher levels of CD28 when compared with cells cultured
in regular RPMI even after cultures were switched from modified to
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regular RPMI medium for 14 days (Fig. 5C). Moreover, these cells
maintained effector capabilities, as indicated by comparable CD107a
expression (i.e., degranulation) upon coculture with Daudi target cells
(Fig. 5D). Overall, our data suggest that the improved function of ICV-
delivered CAR T cells may be attributed to reprogramming to memory
T cells in the CSF environment.

Distinct gene signatures of in vivo persisting ICV and IV CAR T
cells

To quantitatively dissect differences in expression of memory,
differentiation, and immune checkpoint markers, we harvested CAR
T cells delivered ICV or IV from mice bearing both CNS and systemic
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lymphoma and performed single-cell RNA-seq. Human T cells were
isolated from mouse bone marrow 68 days after CAR T-cell infusion.
Clustering analysis identified 5 clusters; t-SNE plots demonstrated that
CART cells harvested from ICV-treated mice are enriched in cluster 3,
whereas CAR T cells from IV-treated mice are enriched in cluster 1
(Fig. 6A). In agreement with in vitro CSF-treated cells (Fig. 5), in vivo
persisting ICV-delivered CAR T-cell-enriched cluster 3 is character-
ized by higher levels of hallmark memory genes (KLF2, BCL2L11,
BCL2, IL7R, CD27, and CD28) and lower levels of differentiation and
effector genes (PDCD1, EOMES, FOS, TBX21, IFNG, PRF1, GZMH,
and GZMB) when compared with IV-delivered CAR T-cell-enriched
cluster 1 (Fig. 6B). Overall gene expression patterns, as shown in the

Figure 6.

ICV- and IV-delivered CAR T cells that
persist in vivo have distinct gene sig-
natures. T cells were harvested from
the bone marrow of mice 68 days after
ICV or IV CAR T-cell infusion, and the
samples from 1 mouse in each group
were subjected to single-cell RNA-seq
(scRNA-seq) analysis. The subsequent
analysis of human gene data was per-
formed using “Seurat” package v3.0
and R scripts. t-SNE visualization plot
of scRNA-seq data (A), and dot plots
and feature plots in the identified cell
clusters (B) were generated for spe-

cific T-cell populations. ICV-delivered
Percent expressed . .

. 25 cells were enriched in cluster 3, where-
as |V-delivered cells were enriched in
cluster 1. C, Cluster-specific markers
were identified to generate a heatmap.

® 50
® 75

Average expression

. . 1

V]
-1

.

MTRNAZLE |

1A T

G Il

000 OO 0 I
Lre (LU Rt

LT
I! 0 e

84 Cancer Immunol Res; 9(1) January 2021

FIFFEETF

Features (effector)

2 ) L
I S

LI B I I -

aun.ncg

[

pression

L= A

CANCER IMMUNOLOGY RESEARCH

Downloaded from cancerimmunolres.aacrjournals.org on March 5, 2021. © 2021 American Association for Cancer Research.


http://cancerimmunolres.aacrjournals.org/

Published OnlineFirst October 22, 2020; DOI: 10.1158/2326-6066.CIR-20-0236

heatmap in Fig. 6C, display distinct gene signatures between the
clusters enriched for ICV- and IV-delivered CAR T cells.

Enhanced memory and reduced exhaustion of ICV-delivered CAR
T cells

To investigate if the gene expression patterns that distinguished
ICV- from IV-delivered CAR T cells (Fig. 6) resulted in enhanced
memory and/or reduced exhaustion, we performed an in vitro serial
restimulation with CAR T cells harvested from the spleens of mice at
the study endpoint. T cells were stimulated with REM for 2 cycles

Tumor inoculation CART cells ICV or IV

@«‘Q

334 days (ICV)
180 days (V)

Spleen

ICV-Delivered CD19-CAR T Cells for CNS and Systemic Lymphoma

(14 days/cycle), which included both OKT3- and CD19-mediated
antigen stimulation (Fig. 7A). CAR T cells from ICV-treated mice
expanded 9.1 + 0.9-fold from REM1 to REM2, whereas CAR T cells
from IV-treated mice had either lower expansion or reduction in
overall numbers (1.7 £+ 1.6-fold; Fig. 7B), suggesting that ICV-
delivered CAR T cells resisted T-cell activation-induced cell
death (38, 39) and had superior expansion potential. Despite 334 days
of in vivo incubation and repeated in vitro stimulation, CAR T cells
from ICV-treated mice maintained higher levels of CD127, CD62L,
and CD161—markers that represent central memory T cells and
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Figure 7.

ICV-administered CD19-CAR T cells exhibit memory phenotype and function. A, T cells harvested from two representative mouse spleens (334 days after infusion for
ICV mice and 180 days after infusion for IV mice) were stimulated with OKT3 and feeder cells, including PBMCs and LCL cells, for 2 cycles (14 days/cycle).
B, Percentages of CAR T cells (CD3EGFR™) and fold change following first and second REM stimulation are presented. C, CAR T cells were analyzed for expression of
CD161, CD127, and CD62L following the second REM stimulation. D, Uptake of glucose analogue NBDG after 30 minutes was analyzed by flow cytometry. E, CD62L™"
and CD62L" cell populations were assessed for the ability to uptake NBDG over time. Percentages (mean + SD) of NBDG™ cells are presented. Linear mixed models
were used to compare CD62" and CD62L over time; **, P < 0.01. F, Mitochondria of T cells following the second REM stimulation were stained with 100 nmol/L
MitoTracker (green) and imaged using an LSM880 confocal microscope. Images were taken at 63x; scale bars, 5 um.
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memory stem cells with high efflux capacity (40)—when compared
with CART cells from IV-treated mice harvested after only 180 days of
in vivo engraftment (Fig. 7C).

Low glycolytic activity represents an intrinsic quality of CAR T cells
associated with clinical response (41). To functionally assess the
glycolytic status of the ICV- and IV-delivered CAR T cells harvested
from mice, we examined their capacity for uptake of the glucose
analogue NBDG. We observed that CD62L" cells, which are enriched
in those isolated from ICV-treated mice (Fig. 7C), exhibited signif-
icantly lower (P < 0.01) NBDG uptake than CD62L" cells (Fig. 7D
and E), supporting the memory-like behavior of these CD62L*
cells (33, 41). To meet differing energy requirements, effector T cells
activate mitochondrial fission and subsequent fragmentation, whereas
memory T cells inhibit mitochondrial fission, leading to mitochondrial
elongation (42, 43). In line with these reported observations, T cells
from ICV-treated mice maintained fused mitochondrial networks that
appeared elongated, whereas T cells from IV-treated mice had punc-
tate mitochondria (Fig. 7F).

Discussion

Although CAR T-cell therapy has shown great promise in the
treatment of hematologic diseases, the generation of durable responses
against tumor relapse remains an obstacle. We here propose that ICV
delivery of CD19-CAR T cells holds superior potential to treat CNS
and systemic lymphoma, which supports the conclusions of two
recently published studies that demonstrate that ICV-delivered CAR
T cells more effectively control primary and metastatic brain
tumors (31, 44). In the present study, ICV-delivered CAR T cells
potently eradicated both CNS and systemic lymphoma, leading to
lymphoma elimination, in conditions where equal or higher doses of
IV-delivered CAR T cells did not yield disease elimination (Figs. 1
and 2). Furthermore, CAR T cells isolated from ICV-treated mice
showed increased phenotypic and functional memory characteristics
(Figs. 2, 6, and 7), which we were able to recapitulate by in vitro
culture with CSF (Fig. 5). These findings suggest that CAR T cells are
conditioned by exposure to CSF in the ICV environment to promote
antitumor activity and memory formation.

Importantly, this study examined how persistence of CAR T cells is
affected by route of administration. CAR T cells delivered ICV were
detectable in peripheral blood of mice >300 days after infusion, even
without detectable lymphoma (Fig. 2). We acknowledge that the
possibility of xenoreactivity of CAR T cells is a potential limitation
of our model. However, our studies were well controlled with equal
dosing of nontransduced (mock) T cells, which demonstrated no
antilymphoma activity. Moreover, we followed the duration of
response to ICV-delivered CAR T cells for over 11 months (334 days)
and did not observe any evidence of toxicity due to graft-versus-host
disease (GVHD), which would indicate xenoreactivity. Absence of
GVHD suggests that there is limited engagement of the endogenous
TCR in our model and, therefore, xenoreactivity likely does not affect
our conclusions. In line with these observations, a recent study by
Mulazzani and colleagues (45) showed that intracerebroventricular
infusion of CAR T cells exhibits superior antitumor efficacy and
persistence compared with IV delivery, where xenoreactivity of CAR
T cells is ruled out using mock T cells. These data support our
observation that differences in outcomes in mice treated with ICV
and IV delivery reflected differences in capacity for antitumor activity
promoted by the two routes of delivery. The long-term persistence of
memory CAR T cells following ICV administration in absence of
antigen, also observed by Mulazzani and colleagues (45), could be due
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to homeostatic mechanisms driven by factors such as cytokines that are
species cross-reactive, such as IL7 (46, 47).

ICV-delivered CAR T cells exhibited a higher degree of memory
phenotype than did IV-delivered CAR T cells (Figs. 6 and 7), and an
elongated mitochondrial morphology consistent with maintaining
memory T-cell persistence (Fig. 7; ref. 43). With t-SNE clustering
and underlying data output, single-cell RNA-seq datasets revealed
distinct gene signatures between ICV- and IV-delivered CAR T cells
that supported evolving memory features of ICV-delivered CAR T
cells but advanced differentiation signatures of IV-delivered CAR T
cells (Fig. 6).

We propose that exposure of CAR T cells to CSF within the ICV
environment leads to a metabolic reprogramming that favors the for-
mation of memory. Proper engagement of metabolic pathways is critical
to fulfilling the nutrient demands of immune cells (33, 35, 36, 48-50),
and inhibition of glycolysis enhances memory T-cell formation (33, 36).
Moreover, elevated extracellular potassium is believed to suppress T-cell
function through the PP2A pathways (51). Compared with serum, CSF
contains lower levels of glucose and potassium, and CAR T cells cultured
in CSF or modified RPMI compared with RPMI with glucose and
potassium levels similar to serum had changes in gene expression that
promoted a memory phenotype (Fig. 5).

In keeping with clinical observations that reactivating CAR T
cells with antigen further augments their efficacy (7), our data
showed that antigen-primed CAR T cells possessed significantly
enhanced antitumor activity, expansion, and persistence regardless
of route of administration when compared with unprimed CAR
T cells (Fig. 3). These data indicate that antigen priming of CAR
T cells contributes to improved antitumor activity, independent of
the CSF microenvironment.

Collectively, the data presented here provide rationale to clinically
evaluate ICV delivery of CAR T cells to treat primary CNS lymphoma
and systemic lymphoma with CNS involvement, as we demonstrated
that a single dose of ICV-delivered CAR T cells has the potential to cure
both primary CNS and systemic lymphoma in mice. Unlike classical T-
cell differentiation patterns, where enhanced effector function is
associated with impaired memory and persistence, ICV-infused CAR
T cells successfully acquired complete effector function for antitumor
activity while maintaining memory function for long-term immune
surveillance and resistance to tumor rechallenge. These differences in
potency and longevity should be evaluated in other systemic tumor
types where CNS involvement is common and may represent a
generalizable strategy to improve CAR T-cell therapy.
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