WHAT WE'RE READING

1 A Sampling of Highlights from the Literature

CANCER IMMUNOLOGY AT THE CROSSROADS

2 Lighting a Fire: Can We Harness Pyroptosis to Ignite Antitumor Immunity?
Zhibin Zhang, Ying Zhang, and Judy Lieberman

RESEARCH ARTICLES

8 The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment

20 Retinoic Acid Synthesis Deficiency Fosters the Generation of Polymorphonuclear Myeloid-Derived Suppressor Cells in Colorectal Cancer
Hong-Wei Sun, Jing Chen, Wen-Chao Wu, Yan-Yan Yang, Yi-Tuo Xu, Xing-Juan Yu, Hai-Tian Chen, Zilian Wang, Xiao-Jun Wu, and Limin Zheng

34 A CRISPR Screen Reveals Resistance Mechanisms to CD3-Bispecific Antibody Therapy
Si-Qi Liu, Alyssa Grantham, Casey Landry, Brian Granda, Rajiv Chopra, Srinivas Chakravarty, Sabine Deutsch, Markus Vogel, Katie Russo, Katherine Seiss, William R. Tschanz, Tomas Rejtar, David A. Ruddy, Tiancen Hu, Kimberly Aardalen, Joel P. Wagner, Glenn Dranoff, and Joseph A. D’Alessio

50 A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T cell–Mediated Antitumor Responses in Human B-cell Malignancies
Iris de Weerdt, Roeland Lameris, George L. Scheffer, Jana Vree, Renate de Boer, Anita G. Stam, Rienke van de Ven, Mark-David Levin, Steven T. Pals, Rob C. Roovers, Paul W.H.I. Parren, Tanja D. de Gruijl, Arnon P. Kater, and Hans J. van der Vliet

62 CD28 Costimulatory Domain–Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function
Justin C. Boucher, Gongbo Li, Hiroshi Kotani, Maria L. Cabreral, Dylan Morrissey, Sae Bom Lee, Kristen Spitler, Nolan J. Beatty, Estelle V. Cervantes, Bishwas Shrestha, Bin Yu, Aslamuzzaman Kazi, Xuefeng Wang, Said M. Sebti, and Marco L. Davila

CD28 mutations enhance CAR T-cell function by reducing expression of exhaustion-related genes. These data highlight considerations for CAR design that could improve antitumor responses.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Activin A Promotes Regulatory T-cell-Mediated Immunosuppression in Irradiated Breast Cancer</td>
<td>Mara De Martino, Camille Daviaud, Julie M. Diamond, Jeffrey Kraynak, Amanda Alard, Silvia C. Formenti, Lance D. Miller, Sandra Demaria, and Claire Vanzouille-Box</td>
</tr>
<tr>
<td>103</td>
<td>Improved T-cell Receptor Diversity Estimates Associate with Survival and Response to Anti-PD-1 Therapy</td>
<td>Dante S. Bortone, Mark G. Woodcock, Joel S. Parker, and Benjamin G. Vincent</td>
</tr>
<tr>
<td>113</td>
<td>Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer</td>
<td>Wen-Der Lin, Tan-Chi Fan, Jung-Tung Hung, Hui-Ling Yeo, Sheng-Hung Wang, Chu-Wei Kuo, Kay-Hooi Khoo, Li-Mei Pau, John Yu, and Alice L. Yu</td>
</tr>
<tr>
<td>123</td>
<td>Acknowledgment to Reviewers</td>
<td></td>
</tr>
</tbody>
</table>

ABOUT THE COVER

The prognostic value of tumor-associated macrophages (TAM) remains to be fully elucidated. By combining multiplex immunofluorescence with digital analysis and machine learning, Vasaranen et al. show that TAM subsets have distinct prognostic roles in patients with colorectal cancer. Total intraprismatical and stromal TAM densities are not of predictive. Rather, TAM polarization is key, with M2-like TAMs correlating with worse cancer-specific survival. Interestingly, a survival benefit is not seen when assessing M1-like TAMs in the tumor stromal region, although high M1:M2 density ratio is associated with better survival. The study highlights the importance of utilizing multiplex analysis to more accurately determine the prognostic value of immune-cell subsets, as total population assessment or single-marker analysis may mask underlying associations. Read more in this issue on page 8. Original image from Supplementary Fig. S3B. Artwork by Lewis Long.