A Sampling of Highlights from the Literature

Lighting a Fire: Can We Harness Pyroptosis to Ignite Antitumor Immunity?
Zhibin Zhang, Ying Zhang, and Judy Lieberman

The Prognostic Role of Macrophage Polarization in the Colorectal Cancer Microenvironment
Juha P. Väyrynen, Koichiro Haruki, Mai Chan Lau, Sara A. Väyrynen, Ronzhong, Andressa Dias Costa, Jennifer Borowsky, Melissa Zhao, Kenji Fujiyoshi, Kota Arima, Tyler S. Twombly, Junko Kishikawa, Simeng Gu, Saina Aminmozaffari, Shanshan Shi, Yoshifumi Baba, Naohiko Akimoto, Tomotaka Ugai, Annacarolina Da Silva, Jennifer L. Guerriero, Marios Giannakis, Shuji Ogino, and Jonathan A. Nowak

A genome-wide CRISPR screen was developed to understand cancer cell-derived resistance mechanisms to CD3-bispecific antibodies. The screen identifies IFNγ signaling being pivotal for responsiveness to CD3 bispecifics, and deficiency in core fucosylation as causing resistance to the therapeutic flotetuzumab.

Retinoic Acid Synthesis Deficiency Fosters the Generation of Polymorphonuclear Myeloid-Derived Suppressor Cells in Colorectal Cancer
Hong-Wei Sun, Jing Chen, Wen-Chao Wu, Yan-Yan Yang, Yi-Tuo Xu, Xing-Juan Yu, Hai-Tian Chen, Zilian Wang, Xiao-Jun Wu, and Limin Zheng

A defect in ADH1-mediated retinoic acid synthesis contributes to the accumulation of polymorphonuclear (PMN)-MDSCs in colorectal cancer. The data highlight how restoring retinoic acid signaling could abrogate the generation of PMN-MDSCs and improve antitumor responses.

A CRISPR Screen Reveals Resistance Mechanisms to CD3-Bispecific Antibody Therapy
Si-Qi Liu, Alyssa Grantham, Casey Landry, Brian Granda, Rajiv Chopra, Srinivas Chakraverty, Sabine Deutsch, Markus Vogel, Katie Russo, Katherine Seiss, William R. Tschantz, Tomas Rejtar, David A. Ruddy, Tiancen Hu, Kimberly Aardalen, Joel P. Wagner, Glenn Dranoff, and Joseph A. D’Alessio

A bispecific antibody antagonizes prosurvival CD40 signaling and promotes Vγ9Vδ2 T cell–mediated antitumor responses in human B-cell malignancies
Irisc de Weerdt, Roeland Lameris, George L. Scheffer, Jana Vree, Renate de Boer, Anita G. Stam, Rieneke van der Male, Mark-David Levin, Steven T. Pals, Rob C. Roovers, Paul W.H.I. Parren, Tanja D. de Grujil, Arnon P. Kater, and Hans J. van der Vliet

CD28 Costimulatory Domain–Targeted Mutations Enhance Chimeric Antigen Receptor T-cell Function
Justin C. Boucher, Gongbo Li, Hiroshi Kotani, Maria L. Cabral, Dylan Morrissey, Sae Bom Lee, Kristen Spiteri, Nolan J. Beatty, Estelle V. Cervantes, Bishwas Shrestha, Bin Yu, Aslamuzzaman Kazi, Xuefeng Wang, Said M. Sebi, and Marco L. Davila

CD28 mutations enhance CAR T-cell function by reducing expression of exhaustion-related genes. These data highlight considerations for CAR design that could improve antitumor responses.
The Cerebroventricular Environment Modifies CAR T Cells for Potent Activity against Both Central Nervous System and Systemic Lymphoma

In the clinic, CD19-CAR T cells are administered IV and are not used specifically to treat CNS lymphoma. The authors show a single ICV infusion of CD19-CAR T cells completely eradicates both CNS and systemic lymphoma in mice.

Activin A Promotes Regulatory T-cell–Mediated Immunosuppression in Irradiated Breast Cancer

Mara De Martino, Camille Daviaud, Julie M. Diamond, Jeffrey Kraynak, Amandine Alard, Silvia C. Formenti, Lance D. Miller, Sandra Demaria, and Claire Vanpouille-Box

Sialylation of CD55 by ST3GAL1 Facilitates Immune Evasion in Cancer

Wen-Der Lin, Tan-Chi Fan, Jung-Tung Hung, Hui-Ling Yeo, Sheng-Hung Wang, Chu-Wei Kuo, Kay-Hooi Khoo, Li-Mei Pai, John Yu, and Alice L. Yu

Silencing of the ST3GAL1 glycosyltransferase in breast cancer cells reduces O-sialylation of CD55, enhancing C3 deposition and susceptibility to complement- and antibody-dependent cytotoxicity. These findings suggest ST3GAL1 inhibition could be a strategy to block breast cancer immune evasion.

Acknowledgment to Reviewers
Updated version

Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/9/1

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link
http://cancerimmunolres.aacrjournals.org/content/9/1.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.