Senescence-induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer

Mutated, activated KRAS is a common feature of pancreatic ductal adenocarcinoma (PDAC). Inhibitors of the downstream MEK and CDK4/6 pathways suppress PDAC growth by inducing cellular senescence and production of chemokines, cytokines, and matrix metalloproteinases. This triggers vasculature remodeling of the PDAC tumors and subsequent NF-κB- and VEGFR-driven tumor infiltration by CD8+ T cells. MEK and CDK4/6 inhibitors lead to exhaustion of the recruited T cells, which are rescued by PD-1 blockade. Inducing senescence with immune checkpoint blockade may improve outcomes.

Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I

Pancreatic ductal adenocarcinoma (PDAC) rarely responds to immune checkpoint blockade (ICB). Although MHC-I is downregulated in PDAC, it is not due to mutations in, or loss of heterozygosity of, antigen presentation or structural genes. Instead, surface MHC-I is selectively targeted by lysosomes via NBR1-mediated autophagy. Autophagy inhibition restores MHC-I expression and improves antitumor immunity, effects dependent on CD8+ T cells and enhanced by concurrent dual ICB. This autophagy-mediated immune evasion mechanism in PDAC cells suggests that its targeting could boost antitumor responses.

The governing of myeloid cells

Factors that regulate function of the heterogeneous myeloid cells in cancer are not fully known. Zhang et al. find that in patients and mice with colorectal tumors, myeloid cell–targeting immunotherapies have distinct macrophage and DC subset–specific effects, revealing myeloid cells as central players in cell interaction networks in the tumor. Mohamed et al. demonstrate that myeloid-derived suppressor cell (MDSC) function relies on PERK, the unfolded protein response–related kinase, via activation of transcription factor NRF2. PERK deletion disrupts mitochondrial homeostasis and induces IFN by activating the STING pathway, reprogramming the MDSC to promote CD8+ T-cell responses. Thus, intelligent targeting of defined myeloid cells can manipulate regulation and improve antitumor responses.

Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer

CRISPR-Cas9 is being investigated to improve immunotherapy responses. A phase I clinical trial shows that T cells with a disrupted PD-1 gene infused into patients with treatment-refractory non–small-cell lung cancer had only grade 1/2 treatment-related adverse events. The edited T cells persist post-infusion and are trackable. Off-target mutation frequency was 0.05%. These data support the safety and feasibility of clinical use in T cell–based immunotherapies.

Lu Y, Mok T. Nat Med 2020 Apr 27. DOI: 10.1038/s41591-020-0840-5.

Cancer Immunology Research

WHAT WE’RE READING

A Sampling of Highlights from the Literature

Article Recommendations from Our Deputy and Senior Editors

June 1, 2020 | Volume 8 | Number 6

AACRJournals.org | 723

Downloaded from cancerimmunolres.aacrjournals.org on August 4, 2021. © 2020 American Association for Cancer Research.
Cancer Immunology Research

A Sampling of Highlights from the Literature: Article Recommendations from Our Deputy and Senior Editors

Updated version
Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/8/6/723

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/8/6/723.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.