WHAT WE'RE READING

723 A Sampling of Highlights from the Literature

CANCER IMMUNOLOGY MINIATURES

724 Human NKp44⁺ Group 3 Innate Lymphoid Cells Associate with Tumor-Associated Tertiary Lymphoid Structures in Colorectal Cancer
Atsuyo Ikeda, Takayuki Ogino, Hisako Kayama, Daisuke Okuzaki, Junichi Nishimura, Shiki Fujino, Norikatsu Miyoshi, Hidekazu Takahashi, Mamoru Uemura, Chu Matsuda, Hirofumi Yamamoto, Kiyoshi Takeda, Tsunekazu Mizushima, Masaki Mori, and Yuichiro Doki

Innate lymphoid cells (ILCs) are strategic players in immune responses. Group 3 ILCs (ILC3s) are found in CRC tissue associated with tertiary lymphoid structures (TLSs). Both TLSs and ILCs decrease during CRC progression, suggesting an unsuspected relationship.

RESEARCH ARTICLES

732 Excessive Costimulation Leads to Dysfunction of Adoptively Transferred T Cells
Dinali Wijewarnasuriya, Christina Bebernitz, Andrea V. Lopez, Sarwish Rafiq, and Renier J. Brentjens

CAR T cells can be driven into a dysfunctional state through excessive costimulation. Understanding the limits of costimulation for CAR T cells will aid design of more efficacious CAR T cells for future clinical trials.

See related article, p. 743

743 Optimization of T-cell Receptor-Modified T Cells for Cancer Therapy
Dylan J. Drakes, Sarwish RAFIQ, Terence J. Purdon, Andrea V. Lopez, Smita S. Chandran, Christopher A. Klebanoff, and Renier J. Brentjens

Tumor-directed T cells function better when expressing IL18 rather than IL12. TCR-modified T cells secreting IL18 eradicate established tumors in syngeneic models in combination with sublethal irradiation and in xenograft models, providing evidence to support IL18-boosted T-cell clinical trials.

See related commentary, p. 732

756 Donor Lymphocyte-Derived Natural Killer Cells Control MHC Class I-Negative Melanoma
Nana Dang, Yuan Lin, Mark Waer, and Ben Sprangens

Donor lymphocyte infusion after allogenic bone marrow transplantation can promote antitumor immunity but risks graft-versus-host disease. If there is no prior marrow transplantation, then donor lymphocyte infusion allows donor NK cells to control MHC-negative melanoma without toxicity.

769 Inhibition of MICA and MICB Shedding Elicits NK-Cell-Mediated Immunity against Tumors Resistant to Cytotoxic T Cells
Lucas Ferrari de Andrade, Sushil Kumar, Adrienne M. Luoma, Yoshinaga Ito, Pedro Henrique Alves da Silva, Deng Pan, Jason W. Pyrdol, Charles H. Yoon, and Kai W. Wucherpfennig

Tumor cells evade NK-cell-mediated immunity by proteolytic shedding of the activating MICA/B ligands. Use of a MICA/B antibody inhibits MICA/B proteolytic shedding, leading to NK-cell responses against tumor cells resistant to cytotoxic T cells.

781 CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement
Miguel Gaspar, John Pravin, Leonor Rodrigues, Sandra Uhlenbroich, Katy L. Everett, Francisca Wollerton, Michelle Morrow, Mihriban Tuna, and Neil Brewis

Antibody agonists that target T-cell costimulatory pathways are being tested in the clinic. FS120, a dual agonist antibody specific for CD137 and OX40, delays tumor growth by improving the activation and proliferation of peripheral T cells.

794 Histone Deacetylase Inhibitors and IL21 cooperate to Reprogram Human Effector CD8⁺ T Cells to Memory T Cells
Junmei Wang, Farah Hasan, Amanda C. Frey, Haiyan S. Li, Jungsun Park, Ke Pan, Cara Haymaker, Chantale Bernatchez, Dean A. Lee, Stephanie S. Watowich, and Cassian Yee

Improving the in vivo persistence of adoptive cell therapies correlates to better patient responses. Histone deacetylase inhibitors and IL21 shift CD8⁺ T cells to a more persistent, central memory phenotype by increasing CD28 promoter accessibility.
Anti-VEGF Treatment Enhances CD8⁺ T-cell Antitumor Activity by Amplifying Hypoxia
Patricia E. de Almeida, Judy Mak, Genevive Hernandez, Rajiv Jesudason, Aurelie Herault, Vincent Javinal, Jovencio Borneo, Jeong M. Kim, and Kevin B. Walsh
Amplification of tumor hypoxia by anti-VEGF treatment enhances CD8⁺ T-cell antitumor responses through increased HIF1α activity. Combining anti-angiogenics and immunotherapeutics may be useful for the treatment of cancer.

Quantification of Early-Stage Myeloid-Derived Suppressor Cells in Cancer Requires Excluding Basophils
ANM Nazmul H. Khan, Tiffany R. Emmons, Jerry T. Wong, Emad Alqassim, Kelly L. Singel, Jaron Mark, Brandon E. Smith, Joseph D. Tario, Kevin H. Eng, Kirsten B. Moysich, Kunle Odunsi, Scott I. Abrams, and Brahm H. Segal
A substantial proportion of cells with early-stage myeloid-derived suppressor cell (e-MDSC) surface markers in circulation and in ascites of patients with ovarian cancer are basophils. Exclusion of basophils from e-MDSC is required for prognostic and therapeutic studies.

CSF1R Is Required for Differentiation and Migration of Langerhans Cells and Langerhans Cell Histiocytosis
Silvia Lonardi, Sara Scutera, Sara Licini, Luisa Lorenzi, Anna Maria Cesinaro, Luisa Benerini Gatta, Carlotta Castagnoli, Daniele Bollero, Rosaria Sparti, Michela Tomaselli, Daniela Medicina, Federica Calzetti, Marco Antonio Cassatella, Fabio Facchetti, Tiziana Musso, and William Vermi
CSF1R promotes efficient Langerhans cell (LC) differentiation from hematopoietic progenitors and migration, which may be reduced by CSF1R kinase inhibition. CSF1R expression in clinical LC histiocytosis (LCH) specimens suggests potential for CSF1R blockade in the treatment of LCH.