
















We therefore assessed whether CD103 could mediate better re-
cognition, homing, and retention of T cells to cancer cells. To do
this, we initially placed either the CD103þ or CD103– cancer-
specific CTLs across a transwell barrier, away from HCT116 cells,
and allowed any movement to occur within 2 hours period.
Within the first hour, the CD103þ CTLs migrated in significantly
larger numbers across the barrier toward HCT116 cells (Fig. 5A).
Treatment of the CD103þ CTLs with anti-CD103 significantly
reduced the number of T cells migrating toward target cells to a
level similar to that of the CD103– CTLs (Fig. 5B). To validate
the necessity of CD103 in T-cell mobility and homing, we exposed
CD103þ CTLs to E-Cadherin–negative THP-1 cells. No signi-
ficant difference in the numbers of CD103þ CTLs and CD103–

CTLs migrating toward THP-1 was found (Supplementary Fig. S6).
These in vitro data indicated the importance of CD103 in the
movement and migration of CTLs toward E-Cadherin–positive
cancer cells.

In support of our in vitro observations, we carried out ex vivo
IHC on cross-sectional tumor tissues from 5 lung cancer patients.
We found that CD103þCD8þ TILs localized at the E-Cadherin–rich
tumor islets, whereas CD103–CD8þ TILs were mainly in the
E-Cadherin–absent tumor regions. CD103þCD8þ TILs significant-
ly clustered around, as well as within, the E-Cadherin–rich tumor
islets at a significantly higher frequency and density (Fig. 6A and
B). In contrast, the CD103–CD8þ TILs were much denser, distal
from the E-Cadherinþ tumor islets (Fig. 6A and B). Altogether,

Figure 4.

Metabolic activities of CD103þ cancer-
specific T cells. A, The ECAR of anti-
gen-stimulated CD103þ or CD103– T
cells across an 80-minute period. SSX-
2 (left) and NY-ESO-1 (right; N, num-
ber of repeats ¼ 3). Injection of glu-
cose, oligomycin, and 2-DG into cells is
indicated. The ECAR of basal glycolyt-
ic capacity (B) and the maximal gly-
colytic capacity (C) of antigen-
stimulated CD103þ or CD103– T cells
(N, number of repeats ¼ 3). D, The
OCR of antigen-stimulated CD103þ or
CD103– T cells across an 80-minute
period. SSX-2 (left) and NY-ESO-1
(right; N, number of repeats ¼ 3).
Injection of oligomycin, FCCP, and
rotenone/antimycinA into cells is indi-
cated. The OCR at basal respiration
stage (E) and the spare respiratory
capacity (F) of antigen-stimulated
CD103þ or CD103– T cells (N, number
of repeats ¼ 3). Data, median � SEM.
� , P < 0.05; �� , P < 0.01; ��� , P < 0.001.
P values were calculated using either
paired Student t test with Wilcoxon
adjustments, one-way ANOVA, or
two-way ANOVA with Tukey post hoc
analysis.
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these observations highlighted that CD103þ CTLs had better hom-
ing and clustering capacity to cancer cells expressing E-Cadherin.

Prolonged exposure of CD103þ T cells to cancer contributes to
T-cell death

It was previously shown that TILs coexpressing CD103 and
CD39 are tumor-reactive TILs, with increased inhibitory receptor
expression (19). However, it remains unclear whether CD103þ

TILs have different subpopulations with distinctive exhaustion
immunophenotypes. We first categorized ex vivo TILs derived from
paired tumor and paratumor tissues from 5 lung cancer patients
according to their CD103 and CD39 expression. Only the CD103þ

TILs derived from the tumor expressed high CD39 (CD39high)
but not the CD103þ T cells derived from the paratumor tissue
(Fig. 7A). In contrast, the CD103þCD39lo T-cell subpopulation
could be found in both paired tissue samples (Fig. 7A). This
indicated the presence of multiple CD103þ TIL subpopulations
and suggests potential differences in their immunophenotype.
Only the CD103þCD39high TIL subpopulation had higher expres-
sion of PD-1, Tim3, and TIGIT (Fig. 7B; Supplementary Fig. S7).
This subpopulation had a significantly higher frequency of PD-
1þTim3þTIGITþ cells (Fig. 7C). In contrast, the CD103þCD39low

TIL subpopulation lacked Tim3 and NKG2A expression, with
only 40% PD-1þTIGITþ cells (Fig. 7D). These observations, there-
fore, suggested that only some CD103þ TILs acquired Tim3
expression and had high coexpression of different inhibitory
receptors.

Upregulation of inhibitory receptors on TILs is one of the
marks of T-cell activation and exhaustion. To further assess
whether prolonged antigen exposure of CD103þ CTLs in cancer

could impair T-cell survival, we cocultured CD103þ CTLs with
HCT116 cells for a 12-hour period in vitro. We found that
prolonged cancer exposure resulted in significantly increased
CD103þ CTLs expressing activated caspase-3 compared with the
CD103– CTLs (Fig. 7E). Because activated caspase-3 presence is
known to be an indicator of cellular apoptosis, we evaluated
CD103þ CTL cell death after prolonged cancer exposure. As
expected, a significantly higher number of CD103þ T-cell death
was observed following prolonged cancer exposure compared with
CD103– T-cell death (Fig. 7F). These observations suggest that
CD103þ CTLs were more prone to apoptosis following prolonged
cancer exposure.

Discussion
The association of CD103þ TIL enrichment with improved

clinical outcomes in cancer patients (3, 4) highlights the need to
have a clear and comprehensive understanding of the CD103-
mediated characteristics of cancer-specific CTLs and their implica-
tions for future immunotherapies. We demonstrated that mature
differentiated CD103þ cancer-specific CTLs could self-regulate
their CD103 expression by producing activated TGFb1, without
needing to rely on external cues from other TGFb1-producing cells.
We further showed that the presence of CD103 improved TCR
antigen sensitivity and enabled faster cancer recognition and more
rapid and efficient cancer cell killing. CD103þ CTLs were also found
to have an elevated energetic potential and faster migration capac-
ity. However, our data also demonstrated that CD103þ cancer-
specific CTLs are more susceptible to apoptosis following prolonged
cancer exposure.

Figure 5.

CD103 expression on T cells enables faster migration and homing. A, The number of CD103þ or CD103– SSX-2–specific T cells that migrated across a transwell
membrane toward HCT116 cells, over a time period of 2 hours, at an E:T ratio of 1:4. SSX-2–specific T-cell clones shown on the left and NY-ESO-1–specific T clones
shown on the right (N, number of repeats ¼ 3). B, The number of CD103þ or CD103– T cells that migrated across a transwell membrane after 60 minutes with or
without anti-CD103 blocking treatment. SSX-2–specific T-cell clones shownon the left andNY-ESO-1–specific T clones shownon the right (N, number of repeats¼ 3).
Data,median � SEM. � ,P <0.05; �� , P <0.01; ��� , P <0.001; ns, not significant. P valueswere calculated using either one-way or two-wayANOVAwith Tukeypost hoc
analysis.
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It is well established that DCs, and most likely Tregs, are the main
players in producing TGFb1 for inducing CD103 expression on
developing CTLs (8–10). Both TGFb1 and antigen exposure are
required to induce a CD103 tissue residential T-cell signature (36, 37).
We found that mature CD103þ cancer-specific CTLs, but not CD103–

CTLs, could self-produce activated TGFb1 to continually sustain
prolonged CD103 expression, without needing to rely on other
external TGFb1-producing cells. The self-regulation of CD103
maintenance indicates a possibly unique subset of cancer-specific
T cells that could be present in the tumor microenvironment with
unique and effective antitumor immune properties. However, the
frequency of this CD103þTGFb1þ self-regulatory, cytotoxic T-cell
population and its importance, especially during cancer growth,
merits further investigation.

Our in vitro data showed that CD103þ cancer-specific CTLs had
higher energy potential compared with CD103– CTLs. However,
in the tumor microenvironment, enhanced glucose consumption by
cancer cells can deprive TILs of the glucose needed for proper T-cell
function (32). This therefore suggests that CD103þ CTLs need to
be able to utilize different metabolites to meet their high energy
demand. Previous work by Kupper and colleagues has highlighted
the capacity of virus-specific Trm cells to take up exogenous
free fatty acids, and this accounts for the long-term survival
of T cells and further helps in mediating protective immunity in
virus-infected tissues (38). In light of this, it merits further inves-
tigation on whether CD103þ cancer-specific Trm cells are able to
utilize a variety of metabolites and how this affects their effector

function and survival, especially in the glucose-deprived tumor
microenvironment.

It is well established that human cancer-specific T cells have low-
affinity TCRs and, therefore, have less efficient TCR-mediated acti-
vating signaling (15). Because CD103 is known to accumulate in the
immunologic synapse (18), it is likely that increasing CD103 and E-
Cadherin interactions could strengthen the affinity of TCR binding
and, therefore, increase the sensitive engagement with the tumor
antigen/MHC complex on cancer cells. We demonstrated that the
CD103 and E-Cadherin interaction improved the efficiency of TCR-
mediated effector responses by CD103þ CTLs. In addition to improve
TCR sensitivity, it is also likely that CD103 could assist in improving
TCR-mediated signaling. Previous work has highlighted that CD103
could enhance the phosphorylation of 2 key downstream proteins of
TCR signaling, ERK1/2 and PLCg1 (18). Therefore, the specific
mechanisms of CD103 in mediating TCR downstream signaling
necessitates further investigation.

Coexpression of CD103 and CD39 has been demonstrated to mark
tumor-reactive TILs (19). A study also indicates that regulation of TILs
in tumor tissue can lead to competition between antitumoral Trm
activity and protumoral exhaustion activity (39). Here, we demon-
strated varying subpopulations of CD103þ TILs that are present in the
tumor microenvironment and that only the CD39highCD103þ TIL
subpopulation coexpressed multiple inhibitory receptors. Our data
also showed that prolonged exposure of CD103þCTLs to cancer could
result in more T-cell apoptosis, which goes hand in hand with our
previous finding that the overall frequency of CD103þTILs diminishes

Figure 6.

CD103þ CD8þ TILs localize on E-Cadherin–rich tumors. A, Proportion of CD103þCD8þ T cells (left) or CD103–CD8þ T cells (right) present either within, clustering
around, or distal from E-cadherinþ cells (N, number of patients¼ 5; at 95th percentile).B,Density (by mm2) of CD103þCD8þ T cells (left) or CD103–CD8þ stained cells
(right) present eitherwithin, clustering around, or distal fromE-cadherinþ cells (N, number of patients¼ 5). Data,median� SEM. � ,P<0.05; �� ,P <0.01; ��� ,P<0.001;
ns, not significant. P values were calculated using one-way ANOVA with Tukey post hoc analysis.
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as tumor size progresses (21). Based on our current study, the
CD103þCD39low TIL subpopulation as an alternative tumor-
reactive subpopulation could be a critical Trm population that can
be improved using novel tissue-localized immunotherapy strategies. In

summary, our data shed light on the working and characteristics of
CD103þ cancer-specific CTLs, which could provide significant
insights for future design of novel tissue-localized antitumor T-cell
immunotherapies.

Figure 7.

Ex vivo CD103þ TIL phenotype and in vitro analysis of T-cell death. A, Representative flow cytometry contour plots of CD39 and CD103 expression on total CD8þ

TILs derived from either tumor or paratumor tissues (left and middle), with graph showing the frequency of CD8þ TILs coexpressing CD39 and CD103 across
5 different lung cancer patients (N, number of patients ¼ 5; at 95th percentile). B, Representative tSNE plots identifying total CD3þ, CD8þ, and CD4þ TILs (top);
CD103þCD39high, CD103þCD39low, CD103þCD39–, and total CD103–CD8þ TILs (middle); and PD-1–, Tim3-, TIGIT-, and NKG2A-expressing TILs. C, Proportion of
PD-1þTIGITþTim3þNKG2A– cells in CD103þCD39high, CD103þCD39low, CD103þCD39–, or total CD8þ TILs derived from paired tumor and paratumor (N, number of
patients ¼ 5; at 95th percentile). D, Proportion of PD-1þTIGITþTim3–NKG2A– cells in CD103þCD39high, CD103þCD39low, CD103þCD39–, or total CD8þ TILs derived
from paired tumor and paratumor (N, number of patients¼ 5; at 95th percentile). The proportion of activated caspase-3þ T cells (E) and T-cell death (F) following
coculture with HCT116 (that was loadedwith 1 mg SSX-2 antigen) across a time period of 12 hours (N, number of repeats¼ 3). InA, C,D, E, and F, data, median� SEM.
� , P < 0.05; �� , P < 0.01; ��� , P < 0.001. P values were calculated using either one-way or two-way ANOVA with Tukey post hoc analysis.
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