WHAT WE'RE READING

A Sampling of Highlights from the Literature

1

IN THE SPOTLIGHT

Tumor Antigen Heterogeneity: The "Elephant in the Room" of Adoptive T-cell Therapy for Solid Tumors

Steven M. Albelda

See related article, p. 7

MEETING REPORT

Translating Science into Survival: Report on the Fifth International Cancer Immunotherapy Conference

Mustafa Diken, Oliver Kepp, and Arthur N. Brodsky

RESEARCH ARTICLES

Pathogen-Boosted Adoptive Cell Transfer Therapy Induces Endogenous Antitumor Immunity through Antigen Spreading

Gang Xin, Achia Khatun, Paytsar Topchyan, Ryan Zander, Peter J. Volberding, Yao Chen, Jian Shen, Chunmei Fu, Aimin Jiang, William A. See, and Weiguo Cui

An adoptive cell therapy approach was developed to overcome tumor antigen escape and provide durable protection against recurrence. It facilitates antigen spreading and enhances endogenous T-cell responses beyond the initially targeted antigen.

See related Spotlight, p. 2

Tryptophan 2,3-Dioxygenase Expression Identified in Human Hepatocellular Carcinoma Cells and Intratumoral Pericytes of Most Cancers

Delia Hoffmann, Tereza Dvorakova, Vincent Stroobant, Caroline Bouzin, Aurélie Daumerie, Marie Solvay, Simon Klaessens, Marie-Claire Letellier, Jean-Christophe Renauld, Nicolas van Baren, Julie Lelotte, Etienne Marbaix, and Benoit J. Van den Eynde

Immunosuppressive tumor microenvironments are supported by tryptophan catabolism. Human mAbs identify expression of the catabolic enzyme TDO by a subset of tumors, including hepatocellular carcinoma, whereas other cancers restrict expression to intratumoral pericytes, suggesting a role in neoangiogenesis.

See related article, p. 32

Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors

Florence Schramme, Stefano Crosignani, Kim Frederix, Delia Hoffmann, Luc Pilotte, Vincent Stroobant, Julie Preillon, Gregory Driessens, and Benoit J. Van den Eynde

Tryptophan catabolism contributes to tumor immune escape, so inhibiting it could improve antitumor immune therapies. Response to immune checkpoint blockade is enhanced when used with the TDO inhibitor PF06845102/EOS200809 or when administered to TDO-KO mice.

See related article, p. 19

A Neuropilin-1 Antagonist Exerts Antitumor Immunity by Inhibiting the Suppressive Function of Intratumoral Regulatory T Cells

Keunok Jung, Jeong-Ah Kim, Ye-Jin Kim, Hyun Woo Lee, Chul-Ho Kim, Seokjin Haam, and Yong-Sung Kim

T regulatory cells (T_{reg}) are a common immune suppressive cell in the tumor microenvironment. Inhibiting suppressive intratumoral T_{reg} with an NRP1 antagonist improves antitumor CD8^+ T-cell responses and inhibits tumor growth.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>A High-Avidity T-cell Receptor Redirects Natural Killer T-cell Specificity and Outcompetes the Endogenous Invariant T-cell Receptor</td>
<td>Elisa Landoni, Christof C. Smith, Giovanni Fucá, Yuhui Chen, Chuang Sun, Benjamin G. Vincent, Leonid S. Metelitsa, Gianpietro Dotti, and Barbara Savoldo</td>
</tr>
<tr>
<td>94</td>
<td>XCL1/Glypican-3 Fusion Gene Immunization Generates Potent Antitumor Cellular Immunity and Enhances Anti-PD-1 Efficacy</td>
<td>Kun Chen, Zhiyuan Wu, Hong Zhao, Yanmei Wang, Yutong Ge, Dongmei Wang, Zhengjiang Li, Changming An, Yuying Liu, Feifei Wang, Xinyu Bi, Hongying Wang, Jianqiang Cai, Chunhong Ma, and Chunfeng Qu</td>
</tr>
<tr>
<td>108</td>
<td>Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer</td>
<td>Mohammadhadi Khorrami, Prateek Prasanna, Amit Gupta, Pradnya Patil, Priya D. Velu, Rajat Thawani, German Corredor, Mehdi Aliliou, Kaustav Bera, Pingfu Fu, Michael Feldman, Vamsidhar Velcheti, and Anant Madabhushi</td>
</tr>
<tr>
<td>131</td>
<td>Myeloid Cells orchestrate Systemic Immunosuppression, Impairing the Efficacy of ImmunoTherapy against HPV+ Cancers</td>
<td>Gabriele Galliverti, Stephan Wullschleger, Mélanie Tichet, Dhaarini Murugan, Nadine Zanger, Wesley Horton, Alan J. Korman, Lisa M. Coussens, Melody A. Swartz, and Douglas Hanahan</td>
</tr>
<tr>
<td>146</td>
<td>TCR Repertoire Diversity of Peripheral PD-1+ CDB+ T Cells Predicts Clinical Outcomes after Immunotherapy in Patients with Non-Small Cell Lung Cancer</td>
<td>Jiefei Han, Jianchun Duan, Hua Bai, Yuqi Wang, Rui Wan, Xin Wang, Si Chen, Yanhua Tian, Di Wang, Kailun Fei, Zhuoran Yao, Shuhang Wang, Zhimin Lu, Zhiyue Wang, and Jie Wang</td>
</tr>
</tbody>
</table>

A AC icon indicates AuthorChoice
For more information please visit www.aacrjournals.org
Tumors can utilize tryptophan catabolism, via indoleamine 2,3-dioxygenase (IDO1) or tryptophan 2,3-dioxygenase (TDO), to evade antitumor immunity. Although IDO1 is expressed in various tumors and is an antitumor therapeutic target, tumoral TDO expression is poorly characterized, so its usefulness as part of a cancer treatment remains untested. To improve the characterization of TDO, Hoffmann et al. develop TDO-specific monoclonal antibodies and find that most human cancers express TDO; TDO can be expressed on tumor cells or the pericytes of the tumor microenvironment, depending on the tumor type. Schramme et al. develop a small-molecule inhibitor of TDO that improves the antitumor efficacy of immune checkpoint blockade in a TDO-dependent manner. Together, the articles from the Van den Eynde laboratory establish the role of TDO in tumor immune evasion. To read more, Hoffmann et al. begins on page 19 and Schramme et al. begins on page 32. Original immunofluorescence imaging of TDO expression (orange) in human glioblastoma by the Van den Eynde laboratory. Artwork by Lewis Long.