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Abstract

Individuals of African descent are disproportionately affect-
ed by specific complex diseases, such as breast and prostate
cancer, which are driven by both biological and nonbiological
factors. In the case of breast cancer, there is clear evidence that
psychosocial factors (environment, socioeconomic status,
health behaviors, etc.) have a strong influence on racial dis-
parities. However, even after controlling for these factors,
overall phenotypic differences in breast cancer pathology
remain among groups of individuals who vary by geographic
ancestry. There is a growing appreciation that chronic/reoccur-
ring inflammation, primarily driven by mechanisms of innate
immunity, contributes to core functions associated with can-
cer progression. Germline mutations in innate immune genes

that have been retained in the human genome offer enhanced
protection against environmental pathogens, and protective
innate immune variants against specific pathogens are
enriched among populations whose ancestors were heavily
exposed to those pathogens. Consequently, it is predicted that
racial/ethnic differences in innate immune programs will
translate into ethnic differences in both pro- and antitumor
immunity, tumor progression, and prognosis, leading to the
current phenomenon of racial/ethnic disparities in cancer.
This review explores examples of protective innate immune
genetic variants that are (i) distributed disproportionately
among racial populations and (ii) associated with racial/
ethnic disparities of breast and prostate cancer.

Introduction
The Human Genome Project and the discovery of distinctive

genetic variations across patient populations associated with
geography has shaped our genetic analysis and improved our
understanding of disparities in complex diseases among dif-
ferent populations. In particular, the use of geographic ances-
try, defined as the flow of genetic information in distinct
populations over time and geography, aids in delineating the
genetic variations that could explain observed differences in
cancer incidence and progression among various populations.
We sought to link innate immune variants with racial/ethnic
disparities in cancer by describing examples of genetic variants
unequally distributed among ethnic populations, which para-
doxically protect against infection but impact cancer incidence
and progression.

Inflammation and Specific Cancers among
Individuals of African Descent

Individuals of African descent, as identified by ancestry infor-
mative markers (AIM), and those that self-identify as African
American, suffer disproportionately from specific forms of cancer,
cardiovascular disease, inflammatory and autoimmune disease,
and neurologic dysfunction. Complex diseases are affected by
both biological and nonbiological factors, and, in many cases,
the biological (genetic) contributors to disease disparities are less
clearly understood than psychosocial factors such as environ-
ment, socioeconomic status, and health behavior. This article
explores evidence that protective innate immune variants con-
tribute to racial disparities in cancer, such as those that occur
among individuals of African descent, including colorectal can-
cer (1) and multiple myeloma (2) in both men and women,
breast (3) and uterine (4) cancer in women, and prostate, stom-
ach, and lung cancer inmen (5). Except formultiplemyeloma, all
these tissues have a relatively high exposure to infectious agents
that require a strong innate immune defense. The complex asso-
ciation between cancer and inflammation is an increasingly active
area of research (reviewed in refs. 6, 7). More specialized reviews
address the relationship between inflammation and/or innate
immunity and breast (8), colorectal (9), prostate (10–12),
lung (13, 14), stomach (15, 16), and ovarian (17) cancers. The
specific role of innate immunity [and/or members of the Toll-like
receptor (TLR)] family as some of the most common representa-
tives) in tumor progression among these cancers has also received
attention (12, 18, 19). A meta-analysis consisting of 64,591
patients with cancer and 74,467 controls of European descent
demonstrated that 925 sequence variants in 173 innate immune
responsemarkers were significantly associatedwith lung, ovarian,
prostate, breast, and colorectal cancer (20). Unfortunately, few
observational studies have tested the hypothesis that genomic
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aberrations in innate immune response genes are linked to racial/
ethnic disparities of cancer.

Inflammation and Racial/Ethnic Disparities
in Cancer

African American women suffer disproportionately from
more aggressive forms of breast cancer (21, 22). Both biologi-
cal and nonbiological factors contribute to this disparity,
although the relative impact of these factors on breast cancer
morbidity and mortality is a matter of debate (reviewed in
ref. 3). Nonbiological factors that contribute to African-
American disparities in breast cancer include low socioeco-
nomic status, limited access to health care, substandard living
environments, and nutrient-depleted/high-fat diets (reviewed
in ref. 23). Nevertheless, several studies indicate that funda-
mental biological differences are involved in breast cancer
health disparities after controlling for differences in socioeco-
nomic status, access to health care/treatment, and delays in
treatment following diagnosis (see refs. 24, 25). Breast tumors
display a high degree of molecular heterogeneity within and
between molecular subtypes, which vary by phenotype and
prognosis (26, 27). However, the most aggressive breast
cancers (i.e., those most commonly found among African
American women) are associated with inflammation (reviewed
in ref. 28), and the role of inflammation in breast cancer
disparities has become a growing topic of interest (reviewed
in refs. 8, 29).

Several lines of evidence are consistent with the idea that
variations in innate immune-related genes contribute to breast
cancer disparities. First, Elledge and colleagues observed racial
disparities in breast cancer survival among Black, White, and
Hispanic women that existed only when comparing women
who had lymph node–positive, locally advanced, and meta-
static breast cancers (30). Second, small-sized breast tumors
(<2.0 cm) metastasize more extensively among African
American women relative to their European counterpart due
to what is described as "intrinsic biological differences," which
are indicators of aggressive cancers (i.e., lymph node involve-
ment and distant metastases). Although the source of these
differences was not identified, both estrogen receptor status
(another marker of breast cancer aggressiveness) and income
were ruled out (25). Third, inflammatory breast cancer (IBC)
has significantly higher incidence rates and results in shorter
lifespans among African Americans compared with European
Americans, respectively, based on a meta-analysis of 180,224
patients with breast cancer (23). Similarly, African American
ancestry, but not Hispanic ancestry (determined by self-
identification) or socioeconomic status, was identified as an
independent predictor of poor prognosis among a cohort of
935 women diagnosed with IBC between 1998 and 2002 (31).
Finally, ample evidence exists showing that the frequency
distribution of gene sequence variants detected in innate (29)
and adaptive (32) immunity differs between patients with
breast cancer of African and European descent.

Inflammationdue to tissue damageor pathogen infection is the
result of a coordinated, interdependent protective response that
involves both innate and adaptive immunity. Unlike adaptive
immunity that requires days to mount a sustained and highly
specific inflammatory response, innate immune defense is mobi-

lized immediately. Importantly, the rapid response characteristic
of innate immunity can only be achieved by using a predeter-
mined set of genes that code for products immediately capable of
responding to pathogens. The heavy dependence of innate immu-
nity on genetic heritability suggests that it is the contribution of
innate, not adaptive, immunity to the mechanisms of inflamma-
tion that are inherent in complex disease disparities (33). From
the standpoint of population genetics, survival requires genetic
adaptation in innate immune defense to counteract the
high rate of microbial evolution (34). The need for modifica-
tions or genetic variation in innate immune defense is consis-
tent with (i) studies that show these genes are under greater
selective pressure than any other class of proteins in the human
genome (35, 36) and (ii) studies that show this selective
pressure is pathogen driven (37, 38). Malaria provides a
well-characterized example of selective pressure by a pathogen
on the development and diversity of innate immune variants,
such as sickle-cell hemoglobin (HbS), in the human genome
over time (reviewed in refs. 39, 40). In Africa, the geographic
distribution of the HbS variant matches that of malaria (41),
and the persistence of HbS in the human genome illustrates a
genetic compromise that achieves survival against a deadly
infectious agent (Plasmodium) at the cost of introducing anoth-
er pathology (sickle-cell disease). More relevant to racial dis-
parities in cancer is the example of the Duffy antigen/chemo-
kine receptor (DARC), another nonclassical innate immune
gene with variants that protect against malaria. Plasmodium
vivax binds DARC on erythrocytes to gain entry during infec-
tion (42). Genetic variants that reduce DARC expression in
combination with the Fy(a–b–) phenotype of the Duffy antigen
provide protection against Plasmodium vivax but are also asso-
ciated with pathologies that include increased risk of lymph
node and distant metastasis and of poor survival in breast
cancer (43).

Geographic Origin and Genomic Variation
in Innate Immunity

There are classical innate immune gene variations that dis-
play patterns associated with geographic origin. First, Lazarus
and colleagues resequenced 16 genes coding for pattern rec-
ognition receptors (TLRs, etc.) and related molecules among
93 study participants, including 45 European Americans,
24 African Americans, and 24 Hispanic Americans. These
investigators found a total of 705 single-nucleotide poly-
morphisms (SNP) with distinct SNP distribution patterns that
differed for each of the three ethnic groups (33). Second,
Quintana–Murci and collaborators analyzed full genome
sequence variations from the 1000 Genomes Project and found
that innate immune genes were under stronger purifying selec-
tion than any other protein-coding gene (35). Notably,
the diverse functions of these genes included both classical
(antigen recognition and response, development, and mainte-
nance of immune cell lineages, etc.) and nonclassical innate
immunity (structure, motility and adhesion, regulation via
kinases, and transcription factors and other modulators of
gene expression).

Additional findings provide further insight concerning
the unique characteristics of ancestry-specific innate immune
gene expression and variation. First, the Kwiatkowski study
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observed that 532 of the 705 SNP variants in the study (75%)
had higher frequencies in African Americans, although only 24
of 93 individuals in the study (26%) had this ancestry. This
suggested that a greater haplotype diversity exists within the
African American gene pool (44). Two elegant RNA-
sequencing studies used monocyte/macrophage cells from
individuals of African and European ancestry to explore
ancestry-specific transcriptional responses to activation by
pathogens or TLR agonists (36, 45). Quintana–Murci and
coworkers exposed primary monocytes from 100 Europeans
and 100 Africans to TLR agonists LPS (TLR4), Pam3CSK4
(TLR1/2), or R848 (TLR7/8) or to a human seasonal influenza
A virus (IAV; ref. 45). In this European study, there was
minimal ancestry-related genetic admixture within the two
populations. Nevertheless, gene expression in resting mono-
cytes and transcriptional responses to innate immune agonists
differed significantly between Europeans and Africans, includ-
ing 27 innate immune genes that were highly expressed in
African but not European monocytes. In a similar study by
Barreiro and collaborators, monocyte-derived macrophages
from 80 African Americans and 95 European Americans were
exposed to Listeria or Salmonella and were evaluated by expres-
sion quantitative trait locus (eQTL) analysis (36). Importantly,
this study controlled for ancestry-related genetic admixture
common among African Americans and reported results

according to the degree of African ancestry (46). Results indicated
a 9.3% ancestry-related difference in gene expression in
response to infection, with those of greatest African ancestry
demonstrating the strongest inflammatory response, indicated
by higher inflammatory gene expression, enhanced bacterial
clearance, and other measures (36).

Among innate immune genes, there is a rapidly expanding
body of data concerning the 10 human TLRs, their associated
molecules (coreceptors, adaptors, regulatory kinases, transcrip-
tion factors, etc.), and the genetic variants among members of
TLR-related pathways. Importantly, TLR pathways have been
implicated in cancers that occur disproportionately among indi-
viduals of African descent. Although overall TLR function is
protective, cross-talk among TLR downstream signaling pathways
and other regulatory pathways is complex and nuanced (see
ref. 47). As a result, the net impact TLRs have on disease risk and
progression is likely to involve multiple genes in one or more
downstream signaling axes.

Within the TLR family, the subfamily composed of cell
surface TLR2, TLR1, TLR6, and TLR10 recognizes the widest
range of pathogen-associated molecular patterns (PAMP) due
to the large combination of homo- and heterodimers that can
be formed by its members and to the involvement of core-
ceptors in receptor signaling (reviewed in ref. 48). Population
genetics analysis shows that among 63, 47, and 48 individuals
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Geographic origin and effects on racial/ethnic disparities in cancer. Individuals with innate immune gene profiles optimized for pathogen-rich environments
(such as tropical climates) are not optimal in all settings and involve genetic compromises in overall immunity, such as tolerance of low-level chronic
inflammation and/or hyperaggressive immune responsiveness when triggered, that contribute to the disparate incidence and aggressiveness of specific cancers.
The migration of individuals with these innate immune variants from a high-pathogen environment to a new environment results in selective pressure that can
change innate immune profiles.
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of African, European, and East Asian ancestry, respectively, the
DNA sequence diversity of TLR2 (the most commonly paired
member of the subfamily) was equally low in all racial groups
and lower than that of TLR1, TLR6, and TLR10 (49). In
comparison, TLR1 sequence diversity was widely divergent
among the three racial groups, with individuals of African
descent exhibiting two times more diversity than those indi-
viduals of European and East Asian descent. Similarly, indi-
viduals of African descent showed greater nucleotide diversity
in TLR6 and TLR10 genes than those of European or East Asian
ancestry (37). Intriguingly, the less well-characterized human
TLR10 gene had the largest sequence diversity among all
populations, especially among those of African descent (49).
The interaction between two polymorphisms in the TLR2
axis, IRAK4 rs4251545 and TLR2 rs1898830, is a significant
predictor of prostate cancer risk among African American
men (50). In contrast, when tested in a Swedish cohort as
one of 99 SNPs (that did not include TLR2 rs1898830) among
20 TLR pathway genes, IRAK4 rs4251545 did not significantly
impact prostate cancer mortality (51). IRAK4 rs4251545 alone
is also associated with breast cancer risk among a small cohort
of African American women (52).

Ribonuclease L (RNASEL) functions in IFN-mediated
antiviral responses, in part, by degrading viral RNA. Nucleic
acid–sensing TLR3, TLR7, TLR8, and TLR9 differ in their
ligand specificity, with only TLR7 and TLR8 capable of binding
single-stranded RNA fragments generated by RNASEL. An
intriguing small study noted that the presence of the RNASEL
rs486907 variant on one or both alleles strengthened the
association between increased fatty acid consumption and
prostate cancer risk among Caucasian men, although no
mechanism for this association was proposed (53). In contrast,
although the sample size was too small to draw conclusions,
the data suggest that fatty acid consumption reduces prostate
cancer risk in African Americans; however, any association
with the RNASEL rs486907 variant in this population
could not be addressed. Four studies have evaluated the
impact of three RNASEL sequence variants (rs486907,
rs56250729, and rs627928) in relation to prostate cancer risk.
Two independent observational studies and two pooled anal-
yses revealed that inheritance of the RNASEL rs486907 1385
G>A (Arg462Gln) variant allele was not significantly related
to prostate cancer (54–57). However, upon stratification by
racial/ethnic group, Liu and coworkers revealed the RNASEL
rs486907 GGþGA genotype was protective for African
Americans in a pooled analysis of 16 studies (57). Notably,
this meta-analysis excluded four additional case–control stud-
ies from African Americans, Jamaicans, Caucasian Hispanics,
and Caucasian non-Hispanics (54, 58, 59), which compro-
mised the investigators' capacity to generate risk estimates for
Caucasian Hispanics and non-Hispanics. This study limitation
was resolved in another meta-analysis that demonstrated a
marginal increase in prostate cancer risk linked with the
RNASEL rs486907 AA genotype among Caucasian Hispanics
and African Americans/Afro-Caribbeans when compared with
GGþGA carriers (55). Although the three RNASEL sequence
variants (rs486907, rs56250729, and rs627928) did not mod-
ify prostate cancer risk among Hispanics from Spain, posses-
sion of rs486907AA and rs627928 GT/TT genotypes were
linked to increased risk for high tumor stage and/or disease

progression relative to the referent genotype (56). Although
our lab did not establish a link between the RNASEL rs486907
SNP and the risk of developing prostate cancer in a pooled
analysis between African Americans and Jamaicans, we did
observe a marginal 2.1-fold increase prostate cancer risk
among Jamaicans under the heterozygous genetic model (60).
Our findings and those of Alvarez–Cubero and coworkers
require confirmation in larger racially diverse studies (56).
Overall, mixed genetic findings may be attributed to (i) failure
to stratify results by ethnicity or genetic ancestry; (ii) differ-
ences in the selection of control methods (i.e., population vs.
hospital based) used for allelic discrimination; (iii) failure to
consider basic confounders (i.e., age, family history, and other
prostate cancer risk factors) and effect modifiers [i.e., diet,
body mass index (BMI), physical activity, exposure to envi-
ronmental/inflammatory insults]; (iv) studies with small sam-
ple sizes that are underpowered to detect true differences; and
(v) variations in study designs.

Future Directions
Individuals from environments that include a dense, diverse,

and deadly range of pathogens, such as those of African
descent, require robust innate immune genetic programs that,
from an overarching perspective, might be expected to tolerate
a relatively high background of microbes and other environ-
mental insults but respond rapidly and aggressively to legiti-
mate threats. However, whether the innate immune program is
defending against malaria or promoting tumorigenesis, it is
becoming increasingly clear that an effective response must be
profoundly nuanced, given the capacity for both Plasmodium
(61) and cancer (62, 63) to subvert immune defense strategies.
Gene expression analysis of breast and prostate cancers indi-
cates the existence of distinct immune profiles among groups
of individuals who vary by geographic ancestry (Fig. 1;
refs. 64–66). Consequently, it is predicted that racial differ-
ences in innate immune programs will translate into ethnic
differences in both pro- and antitumor immunity, tumor pro-
gression, and prognosis (67, 68), leading to the current phe-
nomenon that African Americans acquire earlier onset and
more aggressive breast (25, 69) and prostate cancers (5). It is
these genetic variations in the innate immune system that
suggest the need for intense scrutiny in identification and
targeting of novel immunologic therapies and their efficacy in
racial/ethnic populations. Such consideration will guarantee
that immuno-oncologic findings are impactful to all popula-
tion groups, thus reducing and eventually eliminating racial/
ethnic disparities in cancers.
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