WHAT WE'RE READING

1037 A Sampling of Highlights from the Literature

MILESTONES IN CANCER IMMUNOLOGY

1038 The Seventh Annual AACR-CRI Lloyd J. Old Award in Cancer Immunology

CANCER IMMUNOLOGY AT THE CROSSROADS

1040 Recharacterizing Tumor-Infiltrating Lymphocytes by Single-Cell RNA Sequencing
Lei Zhang and Zemin Zhang

CANCER IMMUNOLOGY MINIATURES

1047 BCMA-Targeted CAR T-cell Therapy plus Radiotherapy for the Treatment of Refractory Myeloma Reveals Potential Synergy

1079 Hypoxia-Induced VISTA Promotes the Suppressive Function of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment

1091 Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth

RESEARCH ARTICLES

1054 RORγ Agonists Enhance the Sustained Antitumor Activity through Intrinsic Tc17 Cytotoxicity and Tc1 Recruitment
Xikui Liu, Elizabeth M. Zawidzka, Hongxiu Li, Charles A. Larsch, Jenna Dunbar, Dick Bousley, Weiping Zou, Xiao Hu, and Laura L. Carter

1064 Targeting Hypoxia-Induced Carbonic Anhydrase IX Enhances Immune-Checkpoint Blockade Locally and Systemically

1079 Hypoxia-Induced VISTA Promotes the Suppressive Function of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment

1091 Tumor Cells Hijack Macrophage-Produced Complement C1q to Promote Tumor Growth

The density of C1q-producing TAMs and C4d deposits, hallmarks of complement activation, are negative prognostic factors in human clear-cell renal cell carcinoma. Thus, the classical complement pathway is a potential therapeutic target for this cancer.

1106 Combination Therapy for Treating Advanced Drug-Resistant Acute Lymphoblastic Leukemia
Yorleny Vicioso, Hermann Gram, Rose Beck, Abhishek Asthana, Keman Zhang, Derek P. Wong, John Letterio, and Reshmi Parameswaran

Blocking BAFF-R early in ALL promotes killing of leukemic cells. However, if given at later disease stages, efficacy is limited due to TGFβ. Combining VAY736 and a TGFβR1 inhibitor improved treatment efficacy in advanced and drug-resistant ALL.
Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1120</td>
<td>Inhibition of the NKp44-PCNA Immune Checkpoint Using a mAb to PCNA</td>
<td>Kiran Kundu, Sunmita Gosh, Rithajit Sarkar, Avishay Edri, Michael Brusilovsky, Orly Gershoni-Yahalom, Rami Yossef, Avishai Shemesh, Jean-Charles Soria, Vladimir Lazar, Ben-Zion Joshua, Gerry S. Campbell, Moshe Elkahets, and Angel Porgador</td>
</tr>
<tr>
<td>1135</td>
<td>Targeting the YB-1/PD-L1 Axis to Enhance Chemotherapy and Antitumor Immunity</td>
<td>Zhen Tao, Hai lòng Ruan, Lin Sun, Dong Kung, Youngchun Song, Qi Wang, Tao Wang, Yi Hao, and Ke Chen</td>
</tr>
<tr>
<td>1148</td>
<td>Reduced Neoantigen Expression Revealed by Longitudinal Multimomics as a Possible Immune Evasion Mechanism in Glioma</td>
<td>Takahide Nejo, Hirokazu Matsushita, Takahiro Karasaki, Masashi Nomura, Kuniaki Saito, Shota Tanaka, Shunsaku Takayanagi, Tajjun Han, Satoshi Takahashi, Yusuke Kitagawa, Tsukasa Koike, Yukari Kobayashi, Genta Nagae, Shogo Yamamoto, Hiroki Ueda, Kenji Tanuno, Yoshitaka Naita, Motoo Nagane, Keisuke Ikiki, Ryo Nishikawa, Hiroyuki Abaratani, Akitake Mukasa, Nobuhito Saito, and Kazuhiro Kakimi</td>
</tr>
<tr>
<td>1162</td>
<td>A Gene Signature Predicting Natural Killer Cell Infiltration and Improved Survival in Melanoma Patients</td>
<td>Joseph Cursons, Fernando Souza-Fonseca-Guimaraes, Memehn Foroutan, Ashley Anderson, Frédéric Hollande, Soroor Hediyeh-Zadeh, Andreas Behren, Nicholas D. Huntington, and Melissa J. Davis</td>
</tr>
<tr>
<td>1175</td>
<td>CCR4 Blockade Depletes Regulatory T Cells and Prolongs Survival in a Canine Model of Bladder Cancer</td>
<td>Shingo Maeda, Kohei Murakami, Akiko Inoue, Tomohiro Yonezawa, and Naoki Matsuaki</td>
</tr>
<tr>
<td>1188</td>
<td>An Artificial Antigen-Presenting Cell Delivering 11 Immune Molecules Expands Tumor Antigen-Specific CTLs in Ex Vivo and In Vivo Murine Melanoma Models</td>
<td>Lei Zhang, Shilong Song, Xiaoxiao Jin, Xin Wan, Khawar Ali Shahzad, Weiya Pei, Chen Zhao, and Chuanlai Shen</td>
</tr>
<tr>
<td>1202</td>
<td>HPV Epitope Processing Differences Correlate with ERAP1 Allotype and Extent of CD8(^+) T-cell Tumor Infiltration in OPSCC</td>
<td>Emma Reeves, Oliver Wood, Christian H. Ottensmeier, Emma V. King, Gareth J. Thomas, Tim Elliott, and Edward James</td>
</tr>
<tr>
<td>1214</td>
<td>The Impact of High-Dose Glucocorticoids on the Outcome of Immune-Checkpoint Inhibitor–Related Thyroid Disorders</td>
<td>Chunjuan Ma, Fu Stephen Hodi, Anita Giobbie-Hurder, Xiaocheng Wang, Jing Zhou, Amy Zhang, Ying Zhou, Fei Mao, Trevor E. Angell, Chelsea P. Andrews, Jian Hu, Romualdo Barroso-Sousa, Ursula B. Kaiser, Sara M. Tolainey, and Le Min</td>
</tr>
</tbody>
</table>

CORRECTION

| 1221 | Correction: Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC–Peptide Binding Data Set | |
The tumor microenvironment is comprised of several factors that can limit antitumor responses. One such factor is low pH, which results in an acidic environment that can dampen immune responses. Carbonic anhydrase IX (CAIX) is a hypoxia-induced regulatory enzyme that can modulate extracellular pH. Chafe et al. show that this enzyme is associated with risk of metastasis and worse overall outcome in patients with melanoma. Targeting CAIX with a small-molecule inhibitor alleviates extracellular acidification by altering the glycolytic metabolism of melanoma cells, allowing antitumor responses to ensue. Combining the CAIX-targeting small-molecule inhibitor with immune checkpoint blockade in breast cancer and melanoma models sensitizes the tumors to the therapy, boosts antitumor responses, and reduces tumor growth and metastases. These data highlight how targeting CAIX in solid tumors is a potential strategy to improve therapeutic responses and survival of patients. Read more in this issue on page 1064. Original image from Fig. 1A. Artwork by Lewis Long.