WHAT WE'RE READING

853 A Sampling of Highlights from the Literature

CANCER IMMUNOLOGY AT THE CROSSROADS

854 Pulling RANK on Cancer: Blocking Aire-Mediated Central Tolerance to Enhance Immunotherapy
Maureen A. Su and Mark S. Anderson

CANCER IMMUNOLOGY MINIATURES

860 IL17A Blockade Successfully Treated Psoriasiform Dermatologic Toxicity from Immunotherapy
Daniel Johnson, Anisha B. Patel, Marc I. Uemura, Van A. Trinh, Natalie Jackson, Chryssa M. Zobniw, Michael T. Tetzlaff, Patrick Hvo, Jonathan L. Curry, and Adi Diab

Patients with skin lesions as a result of immune checkpoint inhibitor therapy are usually treated with corticosteroids. A patient with severe psoriasiform dermatologic toxicity was treated with anti-IL17A instead, which cleared the skin without altering response to pembrolizumab.

866 Phenotypic and Genomic Determinants of Immunotherapy Response Associated with Squamousness
Aaron M. Goodman, Shumei Kato, Ranajoy Chattopadhyay, Byouose Okamura, Ila M. Saunders, Meagan Montesion, Garrett M. Frampton, Vincent A. Miller, Gregory A. Daniels, and Razelle Kurzrock

Tumor mutational burden (TMB) differs between squamous cell carcinomas (SCCs) and non-SCCs. Amongst SCC subtypes, cutaneous disease has the highest TMB, and both high TMB and cutaneous histology correlate with better outcome in patients after immune checkpoint blockade.

RESEARCH ARTICLES

874 IL1R8 Deficiency Drives Autoimmunity-Associated Lymphoma Development
Federica Riva, Maurilio Ponzone, Domenico Supino, Maria Teresa Sabrina Bertilaccio, Nadia Polentatruiti, Matteo Massara, Fabio Pasqualini, Roberta Carriero, Anna Innocenzi, Achille Anselmo, Tania Veliz-Rodriguez, Giorgia Simonetti, Hans-Joachim Anders, Federico Caligaris-Cappio, Alberto Mantovani, Marta Muzio, and Cecilia Garlanda

Silencing of the regulatory receptor IL1R8 in mice is associated with increased lymphoproliferation in autoimmunity-associated B-cell lymphoma. IL1R8 expression correlates with survival in human diffuse large B-cell lymphoma, suggesting that targeting IL1R8 may present an avenue for future therapies.

886 Programmed Cell Death Ligand-1 (PD-L1) and CD8 Expression Profiling Identify an Immunologic Subtype of Pancreatic Ductal Adenocarcinomas with Favorable Survival
Ludmila Danilova, Won Jin Ho, Qingfeng Zhu, Teena Vithayathil, Ana De Jesus-Acosta, Nilofer S. Azad, Daniel A. Laheru, Elana J. Fertig, Robert Anders, Elizabeth M. Jaffee, and Mark Yarchoan

Two independent cohorts of patients with pancreatic ductal adenocarcinoma (PDAC) were evaluated and a subset of patients with favorable prognosis was identified. These results highlight that in PDAC, the antitumor response is a feature of long-term survival.

896 Function of Human Tumor-Infiltrating Lymphocytes in Early-Stage Non–Small Cell Lung Cancer

CD103+ tissue-resident memory (T_{TRM}) T cells are key for antitumor activity in non-small cell lung cancer and are negatively influenced by eomesoderin (Eomes). T_{TRM} function may be driven by competition between an antitumor T_{TRM} program and an Eomes-associated exhaustion program.
Coexpression of Inhibitory Receptors Enriches for Activated and Functional CD8+ T Cells in Murine Syngeneic Tumor Models
Huizhong Xiong, Stephanie Mittman, Ryan Rodriguez, Patricia Pacheco-Sanchez, Martina Moskalenko, Yagai Yang, Justin Elstrott, Alex T. Ritter, Sören Müller, Dorothee Nickles, Teresita L. Arenzana, Aude-Hélène Capietto, Lélia Delamarre, Zora Modrusan, Sascha Rutz, Ira Mellman, and Rafael Cubas
Inhibitory receptor coexpression is thought to serve as a proxy for exhausted T cells, but can define activated T cells responsive to checkpoint blockade. Cells coexpressing inhibitory receptors may thus be responsive to treatment in the clinic.

Differential Effects of Depleting versus Programming Tumor-Associated Macrophages on Engineered T Cells in Pancreatic Ductal Adenocarcinoma
Csf1R blockade in a model of pancreatic ductal adenocarcinoma negatively impacted the function of infused engineered T cells. Addition of a CD40 agonist increased the persistence of the infused T cells but ultimately, did not rescue their function.

Farnesoid X Receptor Constructs an Immunosuppressive Microenvironment and Sensitizes FXRhighPD-L1low NSCLC to Anti–PD-1 Immunotherapy
Wenjie You, Li-jun Li, Deqiao Sun, Xue-qing Liu, Zong-juan Xia, Shan Xue, Bi Chen, Hui Qin, Jing Ai, and Handong Jiang
A subtype of non-small cell lung cancer is characterized by immunosuppression through the farnesoid X receptor (FXR) and responsiveness to anti–PD-1 therapy. The combination of high FXR expression and low PD-L1 expression may identify patients receptive to anti–PD-1 immunotherapy.

Tumor-Derived α-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells
Patricia M. Santos, Ashley V. Menk, Jian Shi, Allan Tsung, Greg M. Delgoffe, and Lisa H. Butterfield
AFP secreted by hepatocellular cancer cells inhibits fatty acid synthesis and oxidative phosphorylation in dendritic cells. These effects on mitochondrial metabolism are mediated through mTORC1, SREBP-1, and PGC1α, resulting in immunosuppression.
MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma

Amaia Martinez-Usatorre, Lorenzo F. Sempere, Santiago J. Carmona, Laura Carretero-Iglesia, Gwenaelle Monnot, Daniel E. Speiser, Nathalie Rufer, Alena Donda, Dietmar Zehn, Camilla Jandus, and Pedro Romero

T-cell receptor stimulation strength dictates microRNA-155 expression in CD8^+ T cells. High miR-155 levels and downregulation of its targets correlate with tumor control in melanoma, suggesting their utility as a CD8^+ T-cell responsiveness biomarker.

Poor Response to Neoadjuvant Chemotherapy Correlates with Mast Cell Infiltration in Inflammatory Breast Cancer

Mast cell infiltration and density correlate with poor clinical outcomes and responses to therapy in patients with inflammatory breast cancer. These cells may be contributing to an immunosuppressive microenvironment and could be targeted to improve therapeutic responses.
Cancer Immunology Research

7 (6)

Updated version Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/7/6

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/7/6. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.