WHAT WE'RE READING

A Sampling of Highlights from the Literature

CANCER IMMUNOLOGY AT THE CROSSROADS

Harnessing Natural Killer Cell Antitumor Immunity: From the Bench to Bedside

Karrune V. Woan and Jeffrey S. Miller

CANCER IMMUNOLOGY MINIATURES

Direct Detection and Quantification of Neoantigens

Qing Wang, Jacqueline Douglass, Michael S. Hwang, Emily Han-Chung Hsieue, Brian J. Mog, Ming Zhang, Nickolas Papadopoulos, Kenneth W. Kinzler, Shibin Zhou, and Bert Vogelstein

Methodology that accurately predicts if cancer-derived neoantigens are processed and bind to human leukocyte antigen molecules (HLA) has been a challenge. “Mutation-associated neoantigen-selected reaction monitoring” (MANA-SRM) is a novel technique that directly detects and quantifies HLA-binding MANA.

Anti–PD-1–Induced Pneumonitis Is Associated with Persistent Imaging Abnormalities in Melanoma Patients


Lung abnormalities, resulting from anti–PD-1–induced pneumonitis in melanoma patients, were visible by computerized tomography during follow-up, despite resolution of clinical symptoms following steroid treatment. This study underscores the need for further examination of long-term effects of immunotherapies.

RESEARCH ARTICLES

Head and Neck Cancers Promote an Inflammatory Transcriptome through Coactivation of Classic and Alternative NF-κB Pathways

Xinpeng Yang, Hui Cheng, Jianhong Chen, Ru Wang, Anthony Saleh, Han Si, Steven Lee, Emine Guven-Maiorov, Ozlem Keskin, Attila Guroy, Ruth Nussinov, Jugal Fang, Carter Van Waes, and Zhong Chen

Inflammation in the tumor microenvironment of HNSCC is induced by NF-κB signaling. The genes involved in the induction of the classical and alternative NF-κB signaling pathway were determined in HPV− and HPV+ HNSCC tumors.

The Atypical Receptor CCRL2 Is Essential for Lung Cancer Immune Surveillance

Annalisa Del Pente, Francesca Sozio, Tiziana Schioppa, Andrea Ponzetta, William Vermi, Stefano Calza, Mattia Bugatti, Valentina Salvi, Giovanni Bernardini, Federica Benvenuti, Annunciata Vecchi, Barbara Bottazzi, Alberto Mantovani, and Silvano Sozzani

The migration of innate immune cells through tumors is necessary for cancer immunosurveillance. Chemokine receptor CCRL2 expression on nonhematopoietic cells in lung tumors controls NK-cell infiltration and their subsequent ability to limit tumor growth.

AXL Targeting Overcomes Human Lung Cancer Cell Resistance to NK- and CTL-Mediated Cytotoxicity


Lung carcinoma cells that express AXL, a tyrosine kinase receptor associated with epithelial-to-mesenchymal transition, have intrinsic resistance to cytotoxic lymphocyte attacks. AXL protein may represent a therapeutic target to enhance cancer cell susceptibility to antitumor immunity.

Blockade of CTLA-4 and PD-1 Enhances Adoptive T-cell Therapy Efficacy in an ICOS-Mediated Manner

Lewis Zhichang Shi, Sangeeta Goswami, Tihui Fu, Baodang Gouan, Jianfeng Chen, Liawoons Xiong, Jan Zhang, Derek Ng Tang, Xuejun Zhang, Luis Vence, Jorge Blando, James P. Allison, Renata Collazo, Jianjun Gao, and Padmanee Sharma

Adoptive T-cell therapy (ACT) is ineffective in solid tumors due to lack of T-cell infiltration. Dual blockade of CTLA-4 and PD-1 enhances efficacy of ACT in melanoma, in an ICOS-dependent manner.

Eradication of Hepatocellular Carcinoma by NKG2D-Based CAR-T Cells

Bin Sun, Dong Yang, Hongjun Dai, Xiuyuan Liu, Ru Jia, Xiaoyue Cui, Wenzuan Li, Changchun Cai, Jianming Xu, and Xudong Zhao

CAR T-cell therapies have shown little clinical success in hepatocellular carcinoma (HCC) due to ineffective killing. NKG2D-based CAR T cells robustly kill HCC cell lines and can clear HCC xenograft tumors.
Single-Cell Transcriptome Analysis Reveals Gene Signatures Associated with T-cell Persistence Following Adoptive Cell Therapy

Yong-Chen Lu, Li Jia, Zhili Zheng, Eric Tran, Paul F. Robbins, and Steven A. Rosenberg

Single-cell transcriptome analysis of clonotypes from a patient with metastatic colorectal cancer treated with adoptive cell therapy revealed distinctive gene expression profiles. Persistent and nonpersistent clonotype profiles are highlighted and include differences in surface markers and transcription factors.

STING Signaling in Melanoma Cells Shapes Antigenicity and Can Promote Antitumor T-cell Activity

Rana Falahat, Patricio Perez-Villarroel, Adam W. Mailloux, Genyuan Zhu, Shari Pilon-Thomas, Glen N. Barber, and James J. Mulé

In some human melanoma cells, STING signaling can enhance antigenicity and susceptibility to lysis by tumor-infiltrating lymphocytes. Conversely, defective STING signaling protects melanoma cells, and this heterogeneity among tumor cells could therefore affect T cell–based immunotherapies.

Blockade of β-Adrenergic Receptors Improves CD8+ T-cell Priming and Cancer Vaccine Efficacy

Clara Daher, Lene Vimeux, Ralitsa Stoeva, Elisa Peranzoni, Georges Bismuth, Elisabeth Wieduwild, Bruno Lucas, Emmanuel Donnadieu, Nadège Bercovici, Alain Trautmann, and Vincent Feuillet

Immune-suppressive mechanisms of the tumor microenvironment limit the efficacy of anticancer vaccination. Targeting β-adrenergic receptor signaling improves the antitumor effects of antitumor vaccination by enhancing CD8+ T-cell priming in the tumor-draining lymph node.

A Bispecific Molecule Targeting CD40 and Tumor Antigen Mesothelin Enhances Tumor-Specific Immunity

Shiming Ye, Diane Cohen, Nicole A. Belmar, Donghee Choi, Siu Sze Tan, Mien Sho, Yoshiko Akamatsu, Han Kim, Ramesh Iyer, Jean Cabel, Marc Lake, Danying Song, John Harlan, Catherine Zhang, Yuni Fang, Alan F. Wahl, Patricia Culp, Diane Hollenbaugh, and Debra T. Chao

A bispecific molecule with conditional activity was engineered to target both an immune activator and a tumor-specific surface antigen. The strategy shows potential to enhance tumor-specific immune activation and reduce systemic toxicity.
ABOUT THE COVER

Chemokine and chemotactic receptor expression in nonhematopoietic cells can affect tumor formation, in part by altering the influx of innate immune cells into the tumor microenvironment (TME). Del Prete et al. investigate the link between mouse atypical chemotactic receptor CCRL2 expression in lung endothelial cells with immune surveillance of lung cancer and subsequent tumor formation. Knockout of CCRL2 in mice or antibody blockade of CCRL2 increases the establishment of lung cancer lesions, leading to poorer mouse survival, by inhibiting NK cell migration into the TME. CCRL2 expression is lower in patient lung tumor tissue compared to paired normal lung tissue, with low tumoral CCRL2 expression correlating to poorer patient survival. Read more starting on page 1775. Artwork is based on Figure 6D by the Sozzani laboratory. Artwork by Lewis Long.