












tumor growth via inhibiting the proliferation and effector
functions of CD4þ and CD8þ T cells.

Calnexin de� ciency promotes antitumor immunity and
controls tumor growth

We next developed a mouse melanoma model to determine
whether calnexin-mediated impairment of T cells contributes to
tumor growth. We injected mice subcutaneously with B16F10

cells expressing shRNA targeting calnexin (sh-CNX) or control
shRNA (sh-NEG) and monitored tumor growth. To generate
protective immunity, na€�ve mice were vaccinated with irradiated
B16F10 tumor cells in advance (Fig. 6A). We found that knock-
down of calnexin inmelanoma tumor cells significantly inhibited
melanoma growth inmice, whereas administration of calnexin-Ig
enhanced melanoma growth (Fig. 6B). Furthermore, knockdown
of calnexin in melanoma tumor cells increased the infiltration of
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Figure 3.

Calnexin inhibited the proliferation of CD4þ/CD8þ T cells and the cytotoxicity of CD8þ T cells. Fresh PBMCs were isolated from 6 healthy donors. A,
CFSE-labeled, bulk-purified pan T cells were stimulated by plate-bound anti-CD3 together with coabsorbed calnexin-Ig (CNX-Ig) or control-Ig (Flag-Ig) protein.
Top, representative CFSE dilution profiles. Bottom, the percentage of CFSE-low cells was quantified. B, Culture supernatants in A were collected at the
indicated times. The concentrations of IL2, IFNg , and TNFa were analyzed by ELISA. C, Tumor antigen–specific CD8þ human T-cell clones (CTL) were
generated from PBMCs of a healthy donor by in vitro stimulation using dendritic cells loaded with irradiated HSC3 cells. Calnexin-overexpressing HSC3 cells
(CNX) or control cells (Vector) were labeled with CFSE and cocultured with CTLs at an effector-to-target ratio (E/T) of 5:1 and 10:1 for 4 hours. D,
Engagement of calnexin during TCR activation maximally suppresses proximal adaptor signaling. Na€�ve pan-T cells purified from human PBMCs were
incubated on ice for 30 minutes with anti-CD3/CD28 and CNX-Ig or Flag-Ig. Then, cell lysates were prepared, and the phosphorylation status of SLP76,
PLC-g1, AKT, and Erk1/2 was examined by immunoblotting. Bar graph is shown as themean� SEM (n¼ 6); N.S., not significant. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001;
���� , P < 0.0001. One representative experiment of three is depicted.
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CD3þ, CD4þ, andCD8þ T cells inmelanoma tumors (Fig. 6C and
D) and enhanced the expression of Ki67 in CD4þ and CD8þ

T cells (Fig. 6E). In addition, treatment with calnexin-Ig inhibited
this infiltration in melanoma tumors (Fig. 6C and D) and the
expressionofKi67 in these T cells (Fig. 6E).Moreover, knockdown
of calnexin in melanoma tumor cells enhanced the expression
of the antitumor effector molecules IFNg and TNFa by CD4þ

and CD8þ T cells in melanoma tumors, and this effect was
significantly reversed by treatment with calnexin-Ig (Fig. 6F).

No differences in Tregs and MDSC frequencies among TILs were
found (Supplementary Fig. S2). There were no significant
differences in the proliferation and effector functions of CD4þ

and CD8þ T cells located in the spleen, lymph nodes and
PBMCs between the groups (Supplementary Fig. S3). To con-
firm that there is no intrinsic enhancement of tumor growth in
the absence of T-cell–mediated antitumor immunity, tumors
were inoculated in T-cell–deficient nude mice. As shown in
Supplementary Fig. S4, administration of calnexin-Ig no longer
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Figure 4.

Calnexin inhibited tumor antigen–specific Ki67 and IFNg expression on CD8þ T cells during progressive OSCC. Fresh PBMCs isolated from 8 patients with
progressive OSCC were restimulated by tumor lysate in the presence of calnexin (CNX)-Ig or Flag-Ig for 48 hours. The PBMCs were then subjected to flow
cytometric analyses of Ki67 and IFNg expression, and the culture supernatants were subjected to cytometric bead assay (CBA) analysis of Th1/Th2 cytokine
concentrations. A, Representative flow cytometric data and bar graph show the percentages of Ki67þCD8þ T cells in the presence of OSCC tumor lysate
with calnexin-Ig or Flag-Ig. B, Representative flow cytometric data and bar graph data show the percentages of IFNgþCD8þ T cells in the presence of
OSCC tumor lysate with calnexin-Ig or Flag-Ig. C, Concentrations of IFNg , TNFa, and IL10 in the culture supernatants. Bar graph, mean � SEM (n ¼ 8).
N.S., not significant; � , P < 0.05; �� , P < 0.01; ���� , P < 0.0001. One representative experiment of two is depicted.
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enhanced melanoma growth upon T-cell deficiency. Calnexin-
silenced B16F10 tumors grew more rapidly than control
tumors, which is consistent with our previous observation
(Fig. 5E and F) that tumor-intrinsic calnexin itself suppressed
tumor growth. Together, these data indicated that calnexin
deficiency promotes antitumor immunity and controls tumor
growth in a T-cell–dependent manner.

Calnexin enhances the expression of PD-1 by repressing PD-1
promoter methylation

Given that T-cell surface receptors such as TIGIT, CTLA-4, PD-1,
and LAG-3play critical roles in inhibiting T-cell responses,wenext
determined whether upregulation of calnexin might enhance the
expressionof thesemolecules and therefore induce impairment of
the proliferation and effector functions of CD4þ and CD8þ T cells
in tumors. To address this, we analyzed the expression of TIGIT,
CTLA-4, PD-1H, PD-1, and LAG-3 on CD4þ and CD8þ T cells
derived from melanoma tumor samples. We found that knock-
downof calnexin inmelanoma tumor cells significantly decreased

the expression of PD-1, but not TIGIT, CTLA-4, PD-1H, or LAG-3,
in CD4þ and CD8þ T cells derived from melanoma tumor
samples (Fig. 7A). In contrast, calnexin-Ig treatment partly
reversed the decrease in PD-1 expression on CD4þ and CD8þ

T cells conferred by knockdown of calnexin in melanoma tumors
(Fig. 7A). Similar results were found in an MB49 tumor model
with calnexin-Ig treatment (Fig. 7B). In addition, calnexin-Ig
enhanced the expression of PD-1 on CD8þ T cells in PBMCs
derived from patients with progressive OSCC, and this enhance-
ment was more significant in tumor antigen–experienced T cells,
as shown in Fig. 7C. Thus, these data suggested that calnexin
enhanced the expression of PD-1 on CD4þ and CD8þ T cells in
OSCC in an antigen-dependent manner.

We then determined the mechanism by which calnexin
enhanced the expression of PD-1 on T cells in tumors. Because
PD-1 promoter CpG islandmethylation status plays a central role
in mediating PD-1 expression (33, 34), we analyzed the methyl-
ation of this region using bisulfite sequencing in T cells from
OSCC patients' PBMCs (Fig. 7D). In contrast to control-Ig, T cells
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Figure 5.

Calnexin promotes OSCC tumor growth in humanized NCG mice. A, Schematic diagram showed the experiment protocol used to determine the role of
calnexin (CNX) in OSCC tumor growth in immune-integrity environment. On day 1, mouse was transplanted with HSC3 cells transduced with sh-CNX or sh-NEG,
1 � 107 human PBMCs were injected intraperitoneally. On days 7 and 14, peripheral blood samples were taken. B, Representative in situ images of OSCC
tumors and tumor volume kinetics were measured and calculated using the following formula: V ¼ L � W2/2. C and D, The bar graph shows the increased
frequencies of CD3þ T cells and functional T cells producing IFNg in the sh-calnexin group compared with the sh-NEG group after PBMC engraftment. E,
Schematic diagram shows the experiment protocol used to determine the role of calnexin in OSCC tumor growth in immune-deficient environment.
HSC3 cells transduced with shRNA targeting calnexin (sh-CNX) or control shRNA (sh-NEG) were injected subcutaneously at indicated time. F,
Representative in situ images of OSCC tumors in NCG mice and tumor volume kinetics were measured and calculated using the formula described in
B. Bar graph, mean � SEM (n ¼ 5); �, P < 0.05. One representative experiment of two is depicted.
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Figure 6.

Calnexin expressed in tumor cells inhibits the antitumor protective immunity of CD4þ and CD8þ T cells in a mouse melanoma model. A, Schematic diagram
shows the protocol used to determine the effect of calnexin (CNX) on melanoma tumor growth in mice. B, Kinetics of tumor volumes in mice as indicated (n¼ 4–5).
C, Flow cytometry analysis of the number of CD4þ and CD8þ T cells infiltrated in tumors derived from mice with the indicated treatments. Note that
knockdown of calnexin (CNX) significantly increased the number of infiltrated CD4þ or CD8þ T cells in tumors. However, treatment with calnexin-Ig
decreased the number of tumor-infiltrated CD4þ or CD8þ T cells (n ¼ 4–5). D, IHC analysis of tumors derived from mice with indicated treatments suggested
that significantly larger numbers of infiltrated CD3þ T cells in tumors were observed in the calnexin-deficient group. E, Flow cytometry analysis of the Ki67
expression on tumor infiltrated CD4þ and CD8þ T cells. F, Representative flow cytometric analysis of expression of IFNg and TNFa in CD4þ or CD8þ T cells
isolated from tumors derived from mice with the indicated treatments; note that knockdown of calnexin in melanoma tumor cells enhanced expression of
the antitumor effector molecules IFNg and TNFa produced by CD4þ and CD8þ T cells, and this enhancement of effector functions was significantly reversed
by treatment with the calnexin-Ig. Bar graph, mean � SEM (n ¼ 4–5); � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; N.S., not significant.
One representative experiment of two is depicted.
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Figure 7.

Calnexin promotes the expression of PD-1 on CD4þ/CD8þ T cells in tumor by restraining the DNAmethylation status of a CpG region in the PD-1 (PDCD1) promoter.
A, Representative flow cytometric analysis and dot plot data show the expression of PD-1, TIGIT, CTLA-4, PD-1H, and LAG-3 on CD4þ or CD8þ T cells
isolated from mice in Fig. 6. The data showed that knockdown of calnexin (CNX) in B16F10 tumor cells significantly reduced the expression of PD-1, but not
TIGIT, CTLA-4, PD-1H, or LAG-3, on CD4þ or CD8þ T cells (n ¼ 4–5). B, Representative flow cytometric analysis and dot plot data from an MB49 tumor model
showed that treatmentwith calnexin-Ig, but not Flag-Igprotein, significantly enhanced the expressionof PD-1 onCD4þandCD8þTcells (n¼4–5).One representative
experiment of two is depicted. C, Representative flow cytometric data and bar graph data showed that calnexin-Ig increased the expression of PD-1 among CD8þ

T cells in the presence of OSCC tumor antigen (n ¼ 8). D, Schematic of the CpG island and bisulfite pyrosequencing region in the PDCD1 promoter. TSS,
transcription start site; red letters, CG sites for bisulfite pyrosequencing. Bisulfite pyrosequencing was used to detect the methylation of PD-1 promoter CpG island.
E, The average methylation in the calnexin-Ig and Flag-Ig group was calculated. Note that recombinant calnexin-Ig significantly suppressed PD-1 promoter
CpG island methylation in T cells. The data are representative of three independent experiments. Bar graph is shown as mean � SEM; � , P < 0.05;
�� , P < 0.01; ��� , P < 0.001; N.S., not significant.
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treated with calnexin-Ig significantly repressed themethylation of
the PD-1 promoter CpG island (Fig. 7E).

Discussion
In this study, we discovered that the ER chaperone protein

calnexin was highly upregulated in OSCC tumor tissues and
multiple tumors. Upregulation of membranous calnexin was
positively correlated with poor prognosis of patients with OSCC.
We found that calnexin played a central role in inhibiting the
infiltration and effector functions of T cells and promoting the
expression of PD-1 on CD4þ and CD8þ T cells in tumors, which
therefore enhanced tumor growth, demonstrating the potential of
calnexin as a new antitumor immunotherapy target.

Calnexin has been reported to play a role in the folding and
quality control of newly synthesized glycoproteins (14, 35). A
wide variety of important cellular and viral glycoproteins are
known substrates of calnexin, including HIV gp120 and gp160,
class I MHC heavy chain, and TCR subunits (36, 37). Although
several reports have shown that calnexin expression may be
associated with the progression of breast cancer, lung cancer, and
colorectal cancer,most previous studies of calnexin focusedon the
relationship between the expression of calnexin and clinical
outcome (38–40). Whether calnexin regulates the T-cell response
during tumor development is unknown. Here, we first identified
that upregulation of calnexin in tumor cells could inhibit the
infiltration of T cells in tumors and the proliferation and effector
functions of CD4þ and CD8þ T cells. As increasing evidence has
suggested that the infiltration and effector functions of T cells in
tumors are critical for antitumor immunity, this finding therefore
reveals a mechanism responsible for poor survival of tumor
patients.

A finding of this study is the establishment of an immunologic
link between calnexin and PD-1 on T cells. We found that
knockdown of calnexin in melanoma tumor cells significantly
decreased the expression of PD-1. In addition, calnexin-Ig treat-
ment partly reversed the decrease of PD-1 expression on T cells.
Calnexin-Ig also enhanced the expression of PD-1 on T cells in
PBMCs derived from patients with progressive OSCC by inhibit-
ing the PD-1 promoter CpG island methylation. PD-1 is upregu-
lated on activated T cells. The binding of PD-1 and PD-L1 induces
T-cell anergy and cell death (5, 41). This study provides evidence
suggesting that PD-1 expressiononT cells canbe influencedby the
expression of calnexins. The detailed mechanism by which cal-
nexin mediates PD-1 expression during tumor development
should be investigated in future studies. There are substantial
efforts underway to identify reliable predictive biomarkers of
response and resistance to immune checkpoint blockade, includ-
ing total tumor mutational load (42, 43), as well as markers of an
effective immune infiltrate within a tumor signifying a "hot" or
"cold" tumor microenvironment (44). This study provides a
potential target for the improvement of responses to anti–PD-1
immunotherapy. Because the density or distribution of T cells and
PD-1/PD-L1 axis activation could affect the differential responses
to checkpoint blockade, the effect of calnexinon the enhancement

of antitumor responses during PD-1 blockade should be deter-
mined in further studies.

Although we found that calnexin expressed in tumor cells
limited the infiltration and effector functions of CD4þ and CD8þ

T cells in tumors and therefore promoted tumor cell growth, the
specific receptor expressed on CD4þ and CD8þ T cells that
interacts with calnexin remains unknown. In addition, the obser-
vations that only membranous calnexin expressed in tumor cells
was associated with poorer survival of patients with OSCC indi-
cate that direct contactwithPBMCs is required for calnexin to exert
its regulatory function. Identification of the receptor that interacts
with calnexin expressed in tumor cells will allow us to better
understand the mechanism by which calnexin impairs the infil-
tration and effector functions of CD4þ and CD8þ T cells in the
tumor microenvironment. Although low concentrations of cal-
nexin were isolated from lung cancer patients' peripheral blood
serum (15), the interaction between calnexin and T cells may
primarily occur in the tumor site. Thus, the interaction between
calnexin and T cells in the circulation and lymphoid tissuemay be
not sufficient for inhibition of the proliferation and effector
functions of T cells. Previous studies from other groups suggest
that calnexin could be transported to the plasma membrane to
interact with glycoproteins such as clonotype-independent CD3
complexes (16, 45). Further studies are required to determine
what protein interacts with calnexin.
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