Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice

Chih-Hang Anthony Tang1, Shiun Chang1, Ayumi Hashimoto1, Yi-Ju Chen1, Chang Won Kang2, Anthony R. Mato3, Juan R. Del Valle4, Dmitry I. Gabrilovich1, and Chih-Chi Andrew Hu1

Abstract

Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (slgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and slgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether slgM could contribute to the accumulation of MDSCs by crossing μS−/− mice, which could not produce slgM, with Eμ-TCL1 mice. The μS−/−/Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of slgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased slgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS−/− mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that slgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696–710. © 2018 AACR.

Introduction

Chronic lymphocytic leukemia (CLL) cells use restricted immunoglobulin variable heavy- and light-chain genes to manufacture B-cell receptors (BCR; refs. 1, 2), suggesting their need for BCR signaling through binding to common antigens. CLL cells carrying B-cell receptors (BCR; refs. 1, 2), suggesting their need for BCR signaling supports CLL progression more slowly in Eμ-TCL1/HEL mice in which Eμ-TCL1 B cells also express the MD4 transgene that encodes a monoclonal BCR against hen egg lysozyme (HEL; ref. 13). The MD4 transgene allows Eμ-TCL1 B cells to produce not only HEL-reactive monoclonal BCR but also secretory IgM (slgM). The role of slgM in the progression of CLL remains unclear.

Solid tumor growth decelerates in C57BL/6 × C3H F1 mice in which B cells are depleted (14). Similarly, when comparing SCID mice reconstituted with T cells or with both T and B cells, tumors grow slower in and are rejected more frequently by mice lacking B cells (15). Mice carrying a deletion of an exon of the IgM heavy-chain gene are incapable of producing B cells (16). When these mice lacking B cells were implanted with EL4 thymoma, MC38 colon carcinoma, or B16 melanoma, slower growth of all three tumors was observed (17). By crossing the squamous cell carcinoma mouse model (K14-HPV16) with RAG-1−/− mice lacking mature B and T cells, the growth of skin cancer is significantly slowed in HPV16/RAG-1−/− mice. Transfer of B cells or serum from HPV16 mice into HPV16/RAG-1−/− mice restores skin cancer growth (18). Although B cells do not infiltrate premalignant HPV16 skin (18), IgG engages IgG receptors (FcγR) on mast cells and macrophages to promote squamous carcinogenesis (19). Although dendritic cells and myeloid-derived suppressor cells (MDSC) express FcγRs, they do not exhibit immunosuppressive effects in this skin cancer model (19). Thus, although B cells can...
Mice and study approval

All strains carrying E\(_m\)TCL1\(^{+/−}\) had been backcrossed to the B6C3 background for more than 10 generations. All experiments involving the use of mice were performed following protocols approved by the Institutional Animal Care and Use Committee (IACUC) at The Wistar Institute.

Flow-cytometric analysis and gating strategies to analyze granulocytic and monocytic MDSCs

Single-cell suspensions from spleens, bone marrow, or peripheral lymph nodes were blocked for 30 minutes using FBS. Cell surface staining was achieved by incubating cells at 4°C for 30 minutes with the following anti-mouse antibodies: CD3-APC-Cy7 (145-2C11; BioLegend); B220-FITC (RA3-6B2; BioLegend); CD5-APC (53-7.3; eBioscience); CD11c-BV421 (N418; BioLegend); CD11b-PE (M1/70; BioLegend); Ly6C-Alexa-488 (HK1.4; BioLegend); Ly6C-Alexa-647 (1A8; BioLegend); CD4-V505 (RM4-5; BioLegend); CD8e-PE-Cy7 (53-6.7; BioLegend); CD45-PE (30-F11; BD Biosciences); CD11b-BV605 (M1/70; BioLegend); and Arg-1-PE (pAB; R&D Systems). Viability staining was accomplished using DAPI (Sigma) for 30 minutes with the following anti-mouse antibodies: CD45-PE, CD11b-BV605, Ly6C-Alexa-488 and Ly6C-Alexa-647. Gated CD45\(^{+}\) hematopoietic cells were further gated for CD11b\(^{+}\) myeloid populations, which were then analyzed for Ly6C\(^{intermediate}\)/Ly6G\(^{−}\) granulocytic MDSCs and Ly6C\(^{+}\)/Ly6G\(^{−}\) monocytic MDSCs.

Antibodies and reagents

Polyclonal antibodies against Ig\(_{\text{a}}\), Derlin-1, Derlin-2, BiP, and PDI were generated in rabbits. Antibodies against TCR\(_\alpha\) (Cell Signaling Technology), IRE-1 (Cell Signaling Technology), XBP-1 (Cell Signaling Technology), Syk (Cell Signaling Technology), phospho-Syk (Tyr525/526) (Cell Signaling Technology), AKT (Cell Signaling Technology), phospho-AKT (Ser473) (Invitrogen), ERK1/2 (Cell Signaling Technology), phospho-ERK1/2 (Thr202/Tyr204; Cell Signaling Technology), GRP94 (Stressgen), p97 (Fitzgerald), actin (Sigma), phospho-Ig\(_{\text{a}}\) (Tyr182) (Cell Signaling Technology), mouse \(\mu\) (SouthernBioTech), human \(\mu\) (SouthernBioTech), and phosphotyrosine (4G10; Millipore) were obtained commercially. Anti-\(\mu\) Fab and F(ab\(^{\prime}\))2 were purchased from SouthernBiotec. LPS (Sigma), GpG-1826 oligodeoxynucleotides (TIB-Molbiol), CFSE (BioLegend), and Ultra-LEAF purified anti-mouse CD3e (145-2C11) and anti-mouse CD28 (37.51) antibodies were also obtained commercially. We developed and chemically synthesized the IRE-1 RNase inhibitor, B-109 (27).

Crosslinking of HEL and purification of oligomeric HEL

HEL (Sigma) was dissolved in PBS (pH 7.4), cross-linked with glutaraldehyde (Fisher) for 30 minutes at room temperature, and quenched with 1 mol/L glycine. The insoluble precipitates were removed by centrifugation. Soluble proteins in the supernatant were precipitated by the addition of ammonium sulfate, and the precipitate was dissolved in a buffer containing 50 mmol/L Tris–HCl (pH 7.4) and 8 mol/L urea. The HEL monomers, dimers, and oligomers were then separated on a Superdex 75 preparation column (GE Healthcare) equilibrated with 50 mmol/L Tris–HCl (pH 7.4), 5 mol/L urea and 300 mmol/L NaCl. Monomeric, dimeric, and oligomeric HEL conjugates were pooled, dialyzed against PBS, and analyzed by SDS–PAGE followed by Coomassie blue staining.

Purification of mouse B cells, CLL cells, and MDSCs

Splenocytes were obtained from mice by mixing the spleens through cell striainers followed by RBC lysis (Sigma). Mouse B cells and CLL cells were purified from mouse spleens by negative selection using CD43 (Ly48) or Pan-B magnetic beads (Miltenyi Biotech), respectively, following the manufacturer’s instructions. MDSCs were purified from spleens, bone marrow, or LLC tumors (dusted with the mouse tumor dissociation kit purchased from Miltenyi Biotech) by positive selection using an MDSC isolation kit (Miltenyi Biotech).

Cell culture

Purified mouse B cells or CLL cells were cultured in the RPMI 1640 media (Corning) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Sigma), 2 mmol/L L-glutamine, 100 U/ml penicillin G sodium, 100 mg/ml streptomycin sulfate, 1 mmol/L sodium pyruvate, 0.1 mmol/L nonessential amino acids, and 0.1 mmol/L β-mercaptoethanol (β-ME). Lewis lung carcinoma (LLC) cells were obtained from ATCC, cultured in DMEM (Corning Inc.) supplemented with 10% FBS, and regularly tested negative for mycoplasma. Cells were incubated in a 37°C and 5%
Tang et al.

CO2 incubator. Confluent cells (70%-80%) were harvested using 0.25% Trypsin (Thermo Fisher Scientific) and passaged or used for experiments.

BCR activation

Mouse MD4/+/-, MD4/+/Eµ-TCL1/+, and Eµ-TCL1/−/− B cells were suspended in RPMI serum-free media supplemented with 25 mmol/L Heps; stimulated with Fab or F(ab′)2 fragments of the goat anti-mouse IgM antibody (20 μg/mL; SouthernBiotech) or with monomeric, dimeric or oligomeric HEL (5 μg/mL) for indicated times; and lysed immediately by adding ice-cold lysis buffer (50 mmol/L Tris–HCl, pH 8.0; 150 mmol/L NaCl; 1% Triton X-100; 1 mmol/L EDTA) supplemented with protease inhibitor cocktail (Roche), 4 mmol/L sodium pyrophosphate, 2 mmol/L sodium vanadate, and 10 mmol/L sodium fluoride. The lysates were analyzed by SDS–PAGE and immunoblotted for molecules of interest using specific antibodies.

Protein isolation and immunoblotting

Cells were lysed in RIPA buffer (10 mmol/L Tris–HCl, pH 7.4; 150 mmol/L NaCl; 1% NP-40; 0.5% sodium deoxycholate; 0.1% SDS; 1 mmol/L EDTA) supplemented with protease inhibitors (Roche) and phosphatase inhibitors. Protein concentrations were determined by BCA assays (Pierce). Proteins were boiled in SDS–PAGE sample buffer (62.5 mmol/L Tris–HCl, pH 6.8; 2% SDS; 10% glycerol; 0.1% bromophenol blue) with β-ME, analyzed by SDS–PAGE, and transferred to nitrocellulose membranes, which were subsequently blocked in 5% non-fat milk (wt/vol in PBS), and immunoblotted with indicated primary antibodies and appropriate horseradish peroxidase-conjugated secondary antibodies. Immunoblots were developed using Western Lightning Chemiluminescence Reagent (PerkinElmer).

Tumor-bearing mice and treatment with an antibody to mouse CD8α

LLC cells were harvested, suspended in DPBS (Corning) as 200 μL containing 5 × 10⁶ cells, and then injected subcutaneously into wild-type and μ−/− mice. The in vivo anti-mouse CD8α monoclonal antibody (53-6.7, Rat IgG2a) and isotype control monoclonal antibody (2A3, Rat IgG2a) were procured from Bio X Cell. Two days before LLC cells were subcutaneously injected on day 0, 8-week-old wild-type and μ−/− mice were injected intraperitoneally with the anti-mouse CD8α monoclonal antibody (100 μg per mouse) or the isotype control monoclonal antibody (100 μg per mouse). These mice received 5 subsequent antibody injections on days 1, 5, 8, 12, and 15. The size of tumor was measured and recorded starting from day 11 to day 22, and data were plotted as means ± SEM.

Patient samples

Primary human CLL cells were obtained by Dr. Mato from patients at the Abramson Cancer Center of the University of Pennsylvania following the approved IRB guidelines from the University of Pennsylvania and The Wistar Institute, with informed consent in accordance with the Declaration of Helsinki. All patients signed a written consent form.

Pulse chase experiments and immunoprecipitation

Human CLL cells were starved in methionine- and cysteine-free media containing dialyzed fetal bovine serum for 1 hour, and pulse-labeled with 250 μCi/mL [35S]-methionine and [35S]-cysteine (Perkin-Elmer) for indicated times. After labeling, cells were incubated in the chase medium containing unlabeled methionine (2.5 mmol/L) and cysteine (0.5 mmol/L). At the end of each chase interval, cells were lysed in RIPA buffer containing protease inhibitors. Precleared lysates were incubated with an anti-human Ig μ heavy chain antibody (SouthernBiotech), together with Protein G-sepharose beads. Immunoprecipitates were boiled in SDS–PAGE sample buffer (62.5 mmol/L Tris–HCl, pH 6.8; 2% SDS; 10% glycerol; 0.1% bromophenol blue) with β-ME, analyzed by SDS–PAGE and visualized by autoradiography.

Enzyme-linked immunosorbent assay (ELISA)

ELISA analyses of IgM (captured by goat anti-mouse μ chain IgG) or anti-HEL IgM (captured by HEL) in mouse sera were achieved using an HRP-conjugated antibody to mouse IgM (SouthernBiotech) and 3,3′,5,5′-Tetramethylbenzidine (TMB) liquid substrate system (Sigma).

MDSC-mediated T-cell suppression assay

MDSCs were purified from the spleens, bone marrow, or tumors. The purity of cell populations was >95%. The Pmel-1 and OT-I responder mice have CD8+ T cells which recognize gp100-derived and OVA-derived peptides, respectively. Splenocytes from Pmel-1 or OT-I mice were mixed with splenocytes from naive mice at the 1:4 ratio in the complete RPMI media, and then plated into 96-well U-bottom plates at 10⁵ cells per well. CD11b+/Ly6G+ or CD11b+/Ly6C− MDSCs were added to the wells at 0.25, 0.5 or 1 × 10⁶ cells per well. The murine gp100 peptide (amino acids 25–33), EGRSNQDWL (AnaSpec), or OVA peptide (amino acids 257–264), SIINFEKL (AnaSpec) was dissolved in pure water, diluted with the RPMI complete media, and then added into the wells at the final concentration of 0.1 μg/mL. After incubation for 48 hours, cells were radiolabeled with 3H-thymidine (1 μCi per well; GE Healthcare) for 6 hours. The uptake of 3H-thymidine was measured as counts per minute (CPM) using a liquid scintillation counter. The percentage of proliferation in comparison to positive controls (the wells with responder cells and the corresponding peptide) was calculated.

Statistical analysis

The Kaplan–Meier analysis was used to evaluate mouse survival data. For comparison of percentages of cell populations among experimental groups, data were graphed as means ± SEM and analyzed by unpaired two-tailed Student t test. A P value of <0.05 was considered statistically significant.

Results

CLL cells developed in MD4+/−/Eµ-TCL1+/− mice fail to recognize HEL

To investigate the role of a monoclonal BCR in the progression of CLL in mice, we generated MD4/Eµ-TCL1 mice by crossing Eµ-TCL1+/− mice, which spontaneously develop CLL (11), with MD4−/− transgenic mice, which produce a monoclonal BCR against HEL (28). To maintain consistent numbers of BCR and equal doses of TCL1 transgene, MD4+/−/Eµ-TCL1+/− mice were crossed with Eµ-TCL1+/− mice since the establishment of this colony. To enumerate HEL-positive B or CLL cells, we conjugated HEL with Alexa-568 for cell surface staining. We stained splenocytes harvested from MD4+/−/Eµ-TCL1+/− mice of different age
groups with CD3-APC-Cy7, IgM-PE-Cy7, B220-FTC, CD5-APC, and HEL-Alexa-568. The IgM$^+$ cells were gated to analyze for B220hi/CD5$^-$/precancerous B cells and B220lo/CD5$^+$ CLL cells (Fig. 1A). MD4$^{+/+}$/Eµ-TCL1$^{+/+}$ mice developed CLL with enlarged spleens (Fig. 1A and B), and all IgM$^+$/B220lo/CD5$^+$ CLL cells developed in older MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ mice failed to recognize HEL (Fig. 1A).

MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ B cells and CLL cells respond to BCR crosslinking with BCR signaling

To activate the BCR via antigen-binding sites instead of constant regions, we generated dimeric and oligomeric HEL by chemically crosslinking HEL using glutaraldehyde (Supplementary Fig. S1A) and separated monomeric, dimeric and oligomeric HEL by size exclusion column chromatography (Supplementary Fig. S1B–S1D). When Eµ-TCL1$^{+/+}$ and MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ B cells were exposed to goat Fab or F(ab)2 anti-mouse IgM (used as negative or positive controls, respectively), monomeric, dimeric, or oligomeric HEL for 2 minutes, only MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ B cells responded to HEL by activating BCR signaling, as shown by increased tyrosine phosphorylation of BCR signaling molecules such as Syk (Supplementary Fig. S2). Dimeric or oligomeric HEL was more effective than monomeric HEL in activating BCR signaling in MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ B cells (Supplementary

Figure 1.

CLL cells developed in MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ mice fail to recognize HEL. A, Splenocytes from MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ mice of indicated age groups were stained with indicated antibodies, HEL-Alexa-568 and DAPI. Live splenocytes were analyzed for precancerous CD5$^-$/B220$^+$ B cells and CD5$^+$ B220$^+$ CLL cells on gated CD3$^-$/IgM$^+$ B-cell populations. CD5$^-$B220$^+$ B cells (red line) and CD5$^+$B220$^+$ CLL cells (blue line) were further analyzed for their HEL-binding capability, shown in the histograms. B, A representative enlarged spleen of 8-month-old MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ mice (right), compared with a representative spleen from 6-week-old MD4$^{+/+}$/Eµ-TCL1$^{+/-}$ mice (left). Data are representative of three independent experiments.
Fig. S2B). MD4+/− and MD4+/−/Eμ-TCL1+/− B cells responded to oligomeric HEL within 30 seconds, reached the maximal response at 2 minutes, and began to downregulate the BCR signaling at 5 minutes (Supplementary Fig. S3). Activating the same cells via crosslinking the constant regions of the BCR using goat anti-mouse IgM F(ab)2 resulted in slower but more persistent BCR signaling, as shown by phosphorylated Igα, Syk, AKT, and ERK (Supplementary Fig. S3). Thus, activation of the BCR by antigen-binding sites or by constant regions produces different responses. BCR signaling promotes CLL survival. To evaluate BCR signaling in precancerous B cells developed in MD4+/−/Eμ-TCL1+/− mice, we isolated and stimulated IgM+/B220hi/CD5+/− B cells from

Figure 2.

MD4+/−/Eμ-TCL1+/− CLL cells can be activated by F(ab)2 and secrete IgM. A, CD5+/B220− B cells from 6-week-old MD4+/− and MD4+/−/Eμ-TCL1+/− mice were stimulated with oligomeric HEL (5 μg/mL) for indicated times, and lysed for immunoblot analysis. B, CD5+/B220− B cells from 3-month-old MD4+/− and MD4+/−/Eμ-TCL1+/− mice were stimulated with oligomeric HEL for indicated times and lysed for immunoblot analysis. C, CD5+/B220− B cells from 6-week-old MD4+/−/Eμ-TCL1+/− mice and MD4+/−/Eμ-TCL1+/− mice were stimulated with oligomeric HEL for indicated time and lysed for immunoblot analysis. D, CD5+/B220− B cells were purified from 7-month-old MD4+/− mice and 8-week-old MD4+/−/Eμ-TCL1+/− mice. CD5+/B220− CLL cells were purified from 7-month-old CLL-bearing MD4+/−/Eμ-TCL1+/− mice. These cells were treated with CpG-1826 (0.5 μmol/L) or LPS (20 μg/mL) for 3 days, and lysed for immunoblot analysis. Data are representative of three independent experiments.
Figure 3.

MD4+/Eμ-TCL1−/− CLL mice generate significantly increased numbers of CD11b+/Ly6G− granulocytic cells. (A) Lymphocyte, (B) granulocyte, and (C) monocyte counts in the peripheral blood of approximately 6-month-old Eμ-TCL1−/− and MD4+/Eμ-TCL1−/− mice were analyzed using a HemaTrue Hematology Analyzer. Leukemia in mice: >5,000 lymphocytes per μL blood. Data were plotted as means ± SEM. D, Blood cells from Eμ-TCL1−/− and MD4+/Eμ-TCL1−/− mice were stained and analyzed for CD11c−/CD11b+ myeloid, CD11b+/Ly6Cint/Ly6G+ granulocytic and CD11b+/Ly6C−/Ly6G− monocytic cells. E-G, Percentages of CD11b+ myeloid cells (E), CD11b+/Ly6Cint/Ly6G+ granulocytic cells (F), and CD11b+/Ly6C−/Ly6G− monocytic cells (G) in the blood of age-matched 6-month-old Eμ-TCL1−/− and MD4+/Eμ-TCL1−/− mice were plotted as means ± SEM. H-J, Percentages of CD11b+ myeloid cells (H), CD11b+/Ly6Cint/Ly6G+ granulocytic cells (I), and CD11b+/Ly6C−/Ly6G− monocytic cells (J) in the blood of age-matched 8-month-old Eμ-TCL1−/− and MD4+/Eμ-TCL1−/− mice were plotted as means ± SEM.
Deleting the capability of Eµ-TCL1+/+ mice to produce sIgM leads to decreased numbers of CD11b+/Ly6G+ granulocytic cells and prolonged survival of the mice. A, Serum IgM levels in Eµ-TCL1+/+ and µS−/−/Eµ-TCL1+/+ mice were determined by ELISA. B, CD5+/B220+ CLL cells from CLL-bearing Eµ-TCL1+/+ and µS−/−/Eµ-TCL1+/+ mice were stimulated with LPS for 3 days and lysed for immunoblot analysis. Data are representative of three independent experiments. C, Blood cells from Eµ-TCL1+/+ and µS−/−/Eµ-TCL1+/+ mice were stained and analyzed for CD11c−/CD11b+ myeloid, CD11b+/Ly6Cint/Ly6G+ granulocytic, and CD11b+/Ly6C−/Ly6G− monocytic cells. D–F, Percentages of CD11b+ myeloid cells (D), CD11b+/Ly6C−/Ly6G− granulocytic cells (E), and CD11b+/Ly6C−/Ly6G− monocytic cells (F) in the blood of age-matched 6-month-old Eµ-TCL1+/+ and µS−/−/Eµ-TCL1+/+ mice were plotted as means ± SEM. G, The Kaplan–Meier survival analysis of Eµ-TCL1+/+, µS−/−/Eµ-TCL1+/+, and MD4+/+/Eµ-TCL1+/+ mice. H and I, The Kaplan–Meier survival analyses of female (H) and male (I) Eµ-TCL1+/+, µS−/−/Eµ-TCL1+/+, and MD4+/+/Eµ-TCL1+/+ mice.
IgM

Although CLL cells developed in MD4 mice, the data were not statistically significant. Sensitized peripheral blood cells from age-matched E mice, the data were not statistically significant. CLL cells still expressed the anti-HEL IgM encoded by the MD4 transgene. The introduction of the MD4 transgene CpG-1826 (a TLR9 ligand), they began to produce large quantities of sIgM (Fig. 2D). Because of the data showing that CLL cells from E-TCL1/ mice no longer HEL reactive (Figs. 1A; 2C and D), they still produced large quantities of sIgM (Fig. 2D). Because of the data showing that CLL cells from E-TCL1/ mice no longer HEL reactive (Figs. 1A; 2C and D), they still produced large quantities of sIgM (Fig. 2D). Because of the data showing that CLL cells from E-TCL1/ mice no longer HEL reactive (Figs. 1A; 2C and D), they still produced large quantities of sIgM (Fig. 2D).

Our blood count analyses of approximately 6-month-old MD4+/−/EP-TCL1+/− and EP-TCL1+/− mice showed that CLL developed in both mouse models (Fig. 3A). We also observed significantly increased numbers of granulocytic cells in the blood of MD4+/−/EP-TCL1+/− mice (Fig. 3B). Although there was an increase in the mean of monocyteics in MD4+/−/EP-TCL1+/− mice, the data were not statistically significant (Fig. 3C). We next stained peripheral blood cells from age-matched EP-TCL1+/− mice and MD4+/−/EP-TCL1+/− mice with CD11c-BV421, CD11b-PE, Ly6G-Alexa-488, and Ly6C-Alexa-647 and gated CD11b+ myeloid populations to analyze for Ly6G+ monocytic and Ly6G+ granulocytic populations (Fig. 3D). We discovered significantly higher percentages of CD11b+ myeloid populations and CD11b+ Ly6G+ granulocytic cells in the peripheral blood of MD4+/−/EP-TCL1+/− mice than those in EP-TCL1+/− mice in the age-matched 4-month-old (Fig. 3D), 6-month-old (Fig. 3D-G), and 8-month-old (Fig. 3H-J) groups. CD11b+/Ly6G+ granulocytic cells reached the highest percentages in the blood of MD4+/−/EP-TCL1+/− mice in the age of approximately 6 months (Fig. 3D-G).

Because 6-month-old wild-type and MD4−/− mice did not accumulate CD11b+/Ly6G+ granulocytic cells in the peripheral blood (Supplementary Fig. S4), we hypothesized that such phenotypes found in EP-TCL1+/− mice and MD4+/−/EP-TCL1+/− mice were associated with CLL progression driven by the 14-kDa TCL1 proto-oncoprotein. The introduction of the MD4 transgene in EP-TCL1+/− mice forced precancerous B cells in MD4+/−/EP-TCL1+/− mice to produce not only HEL-reactive BCR on the B cell surface (Figs. 1A, 2A and B, Supplementary Figs. 2A and 3B) but also slgM against HEL in mouse sera (Supplementary Fig. S5A). Although CLL cells developed in MD4+/−/EP-TCL1+/− mice were no longer HEL reactive (Figs. 1A, 2C and D), they still produced large quantities of slgM (Fig. 2D). Because of the data showing that CLL cells from Ep-TCL1+/− mice also produced large quantities of slgM and increased levels of ER chaperones and ER-associated misfolded protein degradation machineries (Supplementary Fig. S5B, ref. 9), we hypothesized that slgM might induce CD11b+/Ly6G+ granulocytic cells to accumulate in Ep-TCL1+/− and MD4+/−/EP-TCL1+/− mice. To establish the relevance of slgM in human CLL, we performed pulse-chase experiments using fresh CLL cells from human patients and immunoprecipitated IgM from cell lysates and culture media using an antibody to human IgM (Supplementary Fig. SSC and SSD).

slgM drives accumulation of CD11b+/Ly6G+ granulocytic cells in Ep-TCL1+/− mice

To examine the role of slgM in inducing the accumulation of CD11b+/Ly6G+ granulocytic cells in Ep-TCL1+/− mice, we crossed Ep-TCL1+/− mice with μ−/− mice (29), in which the Ig μ chain gene allele was genetically manipulated to allow for the expression of membrane-bound IgM but not slgM. When B cells purified from 6-week-old μ−/−, μ−/−/Ep-TCL1+/−, and Ep-TCL1+/− mice were stimulated with LPS, those from μ−/− and μ−/−/Ep-TCL1+/− did not produce slgM (Supplementary Fig. S5E). In addition, μ−/−/Ep-TCL1+/− B cells produced more membrane-bound IgM and ER chaperones than did μ−/− B cells (Supplementary Fig. S5E). Compared with Ep-TCL1+/− mice, μ−/−/Ep-TCL1+/− mice did not produce slgM in the sera (Fig. 4A). IgM+/CD5+ CLL cells purified from μ−/−/Ep-TCL1+/− mice also did not respond to LPS by producing slgM (Fig. 4B). When compared with age-matched 4-month-old and 6-month-old Ep-TCL1+/− mice, in the peripheral blood of μ−/−/Ep-TCL1+/− + mice, CD11b+ myeloid cells and CD11b+/Ly6G+ granulocytic cells but not CD11b+/Ly6G− monocytic cells were decreased (Fig. 4C-G). The μ−/−/Ep-TCL1+/− mice survived longer than Ep-TCL1+/− mice, whereas MD4+/−/EP-TCL1+/− mice were more short-lived than Ep-TCL1−/− mice (Fig. 4G). Such differences in survival were observed in both sexes (Fig. 4H and I).

CD11b+/Ly6G+ cells from spleens of MD4+/−/EP-TCL1+/− mice suppress T-cell proliferation

CLL cells proliferate and survive via interactions with other types of immune cells in secondary lymphoid organs. We hypothesized that the accumulations of CD11b+/Ly6G+ granulocytic cells in spleens of MD4+/−/EP-TCL1+/− mice might play a role in suppressing the antitumor T-cell function, leading to decreased numbers of CD3+ T cells in spleens of CLL-bearing MD4+/−/EP-TCL1+/− mice (Fig. 1A). The spleens of 6-month-old wild-type, MD4−/−, and μ−/− mice contained only low percentages of CD11b+/Ly6G+ granulocytic cells and CD11b+/Ly6G− monocytic cells (Supplementary Fig. S4). When we examined the granulocytic cells and monocytic cells in spleens of MD4−/−/EP-TCL1+/− mice, we found significantly higher percentages of these cells in MD4−/−/EP-TCL1+/− mice than in E-TCL1+/− (Supplementary Fig. S4 and EP-TCL1+/− mice (Fig. 5A-D). Deleting the ability of B cells to produce slgM in EP-TCL1+/− mice reduced numbers of granulocytic cells but not monocytic cells in spleens of 6-month-old μ−/−/EP-TCL1+/− mice (Fig. 5A-D) and also 6-week-old μ−/−/EP-TCL1+/− mice (Supplementary Fig. S6A and S6B). In the bone marrow, we found significantly higher percentages of granulocytic cells in 6-month-old MD4−/−/EP-TCL1+/− mice than those in age-matched
of the gp100 peptide for 48 hours, and radiolabeled for 6 hours. The percentages of proliferation were plotted as means ± SEM.

We next tested whether CD11b⁺/Ly6G⁺ granulocytic cells could suppress proliferation of T cells, thus functionally qualifying these cells as MDSCs. It is documented that tumor-associated MDSCs are capable of inhibiting T-cell function. CLL cells proliferate in the spleens and circulate in the peripheral blood. We thus purified CD11b⁺/Ly6G⁺ granulocytic cells from spleens and peripheral blood of 6-month-old MD4⁺/−/Eµ-TCL1⁺/− mice (Supplementary Fig. S7A). CD11b⁺/Ly6G⁺ granulocytic cells purified from peripheral blood of MD4⁺/−/Eµ-TCL1⁺/− mice did not suppress gp100-loaded class I MHC-mediated proliferation of CD8⁺ T cells from PMEL-1 mice (Supplementary Fig. S7B). CD11b⁺/Ly6G⁺ granulocytic cells purified from spleens of MD4⁺/−/Eµ-TCL1⁺/− mice could suppress CD3/CD28-stimulated proliferation of CFSE-stained CD8⁺ T lymphocytes (Fig. 5E). We also demonstrated that both CD11b⁺/Ly6G⁺ granulocytic cells and CD11b⁺/Ly6C⁺ monocytic cells purified from spleens of MD4⁺/−/Eµ-TCL1⁺/− mice could suppress gp100-loaded class I MHC-mediated proliferation of CD8⁺ T cells from PMEL-1 mice (Fig. 5F and G). In addition, when compared with CD11b⁺/Ly6G⁺ granulocytic cells purified from spleens of age-matched 6-month-old Eµ-TCL1⁺/− mice, those cells from splenes of age-matched µS⁻/−/Eµ-TCL1⁺/− mice were less capable of suppressing proliferation of CD8⁺ T cells (Fig. 5H), suggesting that slgM could mediate immunosuppressive functions of MDSCs.

Targeting XBP-1s reduces slgM as well as the numbers and functions of CD11b⁺/Ly6G⁺ MDSCs

XBP-1-deficient B cells and CLL cells produce less slgM (27, 30). Activation of regulated IRE-1 is a major step in the degradation and degrades µS mRNA (31, 32). To test whether deleting the XBP-1 gene from MD4⁺/−/Eµ-TCL1⁺/−/S6G and S6H mice could suppress proliferation of T cells, we next tested whether CD11b⁺/Ly6G⁺ granulocytic cells in B-I09 mice with MD4⁺/−/Eµ-TCL1⁺/− mice bearing similar burden of CLL, such MDSCs in B-I09 mice expressed significantly decreased levels of arginase-1 (Arg-1) and were less able to suppress T-cell proliferation (Fig. 6E–G). We have shown previously that a small-molecule inhibitor, B-109, can inhibit the expression of XBP-1s in CLL cells and retard CLL growth in Eµ-TCL1⁺/− mice (27). Similar to XBP-1-deficient B cells, B-109-treated B cells are inefficient in producing slgM (27). We thus hypothesized that treatment with B-109 might alter the function of MDSCs. We intraperitoneally injected MD4⁺/−/Eµ-TCL1⁺/− mice with B-109, and observed leukemic regression (Fig. 6H; Supplementary Fig. S7C), consistent with results of injecting Eµ-TCL1⁺/− mice with B-109 (27). When compared with CD11b⁺/Ly6G⁺ granulocytic MDSCs in DMSO-injected MD4⁺/−/Eµ-TCL1⁺/− mice, such MDSCs in B-109-injected MD4⁺/−/Eµ-TCL1⁺/− mice expressed decreased levels of Arg-1 (Fig. 6I). Although purified CD11b⁺/Ly6G⁺ granulocytic MDSCs from un.injected MD4⁺/−/Eµ-TCL1⁺/− mice could suppress proliferation of T cells, those purified from B-109-injected MD4⁺/−/Eµ-TCL1⁺/− mice lost their immunosuppressive function (Fig. 6J).

Figure 5.

CD11b⁺/Ly6G⁺ granulocytic cells from spleens of MD4⁺/−/Eµ-TCL1⁺/− and Eµ-TCL1⁺/− mice suppress T-cell proliferation. A, Splenocytes from age-matched 6-month-old Eµ-TCL1⁺/−, MD4⁺/−/Eµ-TCL1⁺/−, and µS⁻/−/Eµ-TCL1⁺/− mice were stained and analyzed for CD11c+/CD11b⁺ myeloid, CD103⁺/Ly6G⁺ granulocytic, and CD11b⁺/Ly6G⁺ monocytic cells. B–D, Percentages of CD11b⁺ myeloid cells (B), CD103⁺/Ly6G⁺/CD11b⁺ myeloid cells in MD4⁻/−/Eµ-TCL1⁺/− mice (C), and CD103⁺/Ly6G⁺ monocytic cells (D) in spleens of age-matched 6-month-old MD4⁻/−/Eµ-TCL1⁺/−, MD4⁺/−/Eµ-TCL1⁺/−, and µS⁻/−/Eµ-TCL1⁺/− mice were plotted as means ± SEM. E, CFSE-stained mouse splenocytes (1 x 10⁶ cells) were unstimulated (left), or stimulated with antibodies against mouse CD3e (µg/mL) and CD28 (0.5 µg/mL) for 72 hours in the absence (middle) or presence (right) of 1 x 10⁶ CD11b⁺/Ly6G⁺ granulocytic cells from spleens of MD4⁻/−/Eµ-TCL1⁺/− mice, and subsequently stained with CD4-BV605 and CD8-PE-Cy7. CD8⁺ T cells were gated and analyzed for the frequency of cell division by CFSE dye dilution. F and G, Mixed PMEL-1/naïve splenocytes were incubated at indicated ratios with CD11b⁺/Ly6G⁺ granulocytic cells (F) or CD103⁺/Ly6G⁺ granulocytic cells (G) from MD4⁺/−/Eµ-TCL1⁺/− mouse spleens in the absence or presence of the gp100 peptide. After incubation for 48 hours, cells were radiolabeled with ³H-thymidine for 6 hours. The ³H-thymidine uptake was plotted as means ± SD. H, Mixed PMEL-1/naïve splenocytes were incubated at indicated ratios with CD11b⁺/Ly6G⁺ granulocytic cells from spleens of 8-month-old MD4⁻/−/Eµ-TCL1⁺/− and µS⁻/−/Eµ-TCL1⁺/− mice in the presence of the gp100 peptide for 48 hours, and radiolabeled for 6 hours. The percentages of proliferation were plotted as means ± SEM.

slgM is critical for the function of MDSCs in suppressing T-cell proliferation

To investigate whether slgM induces accumulation of MDSCs in solid tumor microenvironments, we grafted 8-week-old wild-type and µS⁻/− mice with mouse LLC and found significantly increased tumor growth in µS⁻/− mice (Fig. 7A and B). There was no detectable serum IgM in µS⁻/− mice treated with LLC (Supplementary Fig. S8A). We lysed tumors, stained cells with DAPI, CD45-PE, CD11b-BV605, Ly6C-Alexa-488, and Ly6G-Alexa-647. Live DAPI−/CD45⁺ immune cells were gated for CD11b⁺ myeloid cell populations, which were analyzed for their expression of Ly6C and Ly6G (Fig. 7C). Despite a significant decrease of tumor-infiltrating CD11b⁺ myeloid cells in LLC-grafted µS⁺/− mice, there was no significant difference in the percentages of tumor-infiltrating CD11b⁺/Ly6G⁺ granulocytic or CD11b⁺/Ly6C⁺ monocytic MDSCs between LLC-grafted wild-type and µS⁻/− mice (Fig. 7D–F). Although both monocytic and granulocytic MDSCs residing in LLC tumors of wild-type mice suppressed gp100-stimulated T-cell proliferation, MDSCs residing in tumors of µS⁻/− mice lost their immunosuppressive functions (Fig. 7G and H), confirming the role of slgM in mediating the functions of MDSCs. We did not detect a difference in the percentages of infiltrating B cells between tumors in wild-type and µS⁻/− mice (Supplementary Fig. S8B), suggesting that the physical presence of B cells did not prevent the establishment of MDSCs.
regulate functions of MDSCs. In addition, CD11b+Ly6G+ granulocytic MDSCs purified from the spleens or bone marrow of LLC-grafted wild-type and µs−/− mice had a small or no effect in suppressing gp100-stimulated T-cell proliferation (Supplementary Fig. S8C and S8D). To ascertain whether the decreased LLC tumor growth in µs−/− mice was resulted from decreased capabilities of MDSCs in suppressing antitumor CD8+ T cells in mice, we intraperitoneally injected LLC-grafted wild-type and µs−/− mice with anti-CD8 monoclonal antibodies twice weekly to deplete CD8+ T cells. When antimouse CD8+ T cells were depleted, tumor growth in LLC-grafted µs−/− mice could no longer be suppressed (Fig. 7J and L).

Discussion

MD4+/+E0-TCL1+/+ mice on the B6C3 background lived to a median age of approximately 8 months. Approximately 50% E0-TCL1/IghEL (MD4) mice on the C57BL/6 background in a previous Kaplan–Meier survival study can live longer than 16 months (13). The different genetic background of the two models may account for the distinct survival outcomes. Additional causes for the difference may include our choice to maintain the MD4 transgene and granulocytic cells from spleens of 5 MD4 mice were stained and analyzed for CD11c+/E0-TCL1−TCL1− mice, which bind to polymeric immunoglobulin receptor (pIgR), Fcγ receptors (FcγRI or CD351), Fcβ receptors (FcsR or TOSO or FAIM3), complement receptors, and sialic acid-binding immunoglobulin-like lectins, and they can bind to sialic acid residues on slgM (42–44). CD22 is primarily expressed by B cells (45). Although myeloid DGs express Siglec-G, it is not clear whether MDSCs express Siglec-G. However, engagement of Siglec-3 by S100A9 causes MDSC accumulation (46). Second, slgM-antigen complexes can bind to complement receptors via activated complement molecules, and some complement cascade components and complement receptors, such as C5a/C5aR, IC3B, and C3d, promote tumor progression by recruiting and upregulating the suppressive function of MDSCs (47–50). Future studies will be required to test whether Siglec, complement receptor, or other molecules on the surface of MDSCs can be activated by slgM to promote immunosuppressive functions of MDSCs. It is also possible that slgM does not upregulate the functions of MDSCs by binding to a receptor on the surface of MDSCs. One possible scenario is that slgM may stimulate non-MDSC immune cells or stromal cells within tumors to increase production of cytokines or chemokines, contributing to the expansion and upregulated immunosuppressive functions of MDSCs.

CD11b+Ly6G+ granulocytic MDSCs isolated from spleens, where CLL develop, but not from peripheral blood, of CLL-bearing MD4+/+E0-TCL1+/+ mice suppressed proliferation of T cells. Additionally, CD11b+Ly6G+ granulocytic MDSCs purified from tumors of LLC-grafted mice were more effective at suppressing T-cell proliferation than those purified from the spleens and bone marrow of the same mice. These data are consistent with the previous reports showing that MDSCs residing within tumors are more effective at suppressing antitumor T cells, due to upregulating the expression of various immunosuppressive molecules within tumor microenvironments (22).

Figure 6.

Targeting XBP-1s in CLL cells of MD4+/+E0-TCL1+/+ mice leads to reduced slgM and decreased numbers and functions of granulocytic MDSCs. A, Serum IgM levels in MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice were determined by ELISA. B, Blood cells from MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice were stained and analyzed for CD11b+/E0-TCL1− myeloid, CD11b+Ly6Cint/Ly6G− granulocytic, and CD11b+Ly6Cint/Ly6G− granulocytic cells. C and D, Percentages of CD11b+Ly6Cint/Ly6G− granulocytic cells (C) and CD11b+Ly6Cint/Ly6G− granulocytic MDSCs (D) in the blood of MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice were plotted as means ± SEM. E, Splenocytes from MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice were stained with CD11b-BV605, Ly6C-Alexa-488, Ly6G-Alexa-647, and Arg-1-PE. Gated CD11b+Ly6Cint/Ly6G− granulocytic MDSCs were analyzed for the expression of Arg-1, F, Mean fluorescence intensity (MFI) of Arg-1 in gated CD11b+Ly6Cint/Ly6G− granulocytic MDSCs from spleens of 5 MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice was plotted as means ± SEM. G, Mixed OT-I+naive splenocytes were incubated at indicated ratios with CD11b+Ly6Cint/Ly6G− granulocytic cells from spleens of 5 MD4+/+E0-TCL1+/+ and XBP-1KO/MD4+/+E0-TCL1+/+ mice in the presence of the OVA peptide for 48 hours and radiolabeled for 6 hours. The percentages of proliferation were measured as means ± SEM. H, MD4+/+E0-TCL1+/+ mice with high percentage of CLL cells in the blood were identified and injected intraperitoneally with B-109 (50 mg/kg, 4 days) on days 1 to 5 and days 8 to 12. The percentage of CLL cells in PBMCs for each mouse was determined by flow cytometry on days 6 and 13 and compared with initial CLL burden data on day 0 (100%). Data from 4 mice receiving the same treatment were plotted as means ± SEM. I, MFI of Arg-1+ gated CD11b+Ly6Cint/Ly6G− granulocytic MDSCs from spleens of 4 DMSO-treated and 4 B-109-treated MD4+/+E0-TCL1+/+ mice was plotted as means ± SEM. J, Mixed OT-I+naive splenocytes were incubated at indicated ratios with CD11b+Ly6Cint/Ly6G− granulocytic cells from spleens of untreated or B-109-treated MD4+/+E0-TCL1+/+ mice in the presence of the OVA peptide for 48 hours, and radiolabeled for 6 hours. The percentages of proliferation were plotted as means ± SEM.
Reduced LLC growth in μS−/− mice is resulted from reduced capabilities of MDSCs in suppressing proliferation of antitumor CD8+ T cells. A, Eight-week-old wild-type and μS−/− mice were subcutaneously injected with LLC cells on day 0. Tumor size was measured on days 11, 14, 18, and 24 and data were plotted as means ± SEM. B, Tumor weights from day 24 were plotted as means ± SEM. C, Tumors dissected from wild-type and μS−/− mice on day 24 were dissociated and stained. CD45+ cells were gated to analyze for CD11b+ myeloid cells, and CD11b+/Ly6Cintermediate/Ly6G+ granulocytic and CD11b+/Ly6C+/Ly6G− monocytic MDSCs. D–F, Percentages of CD11b+ myeloid cells (D), CD11b+/Ly6C−/Ly6G− monocytic MDSCs (E), and CD11b+/Ly6Cintermediate/Ly6G− granulocytic MDSCs (F) in LLC tumors of wild-type and μS−/− mice were plotted as means ± SEM. G and H, Mixed PMEL-1/naïve splenocytes were incubated at indicated ratios with CD11b+/Ly6C−/Ly6G− monocytic (G) or CD11b+/Ly6Cintermediate/Ly6G− granulocytic (H) MDSCs from LLC tumors in wild-type and μS−/− mice in the presence of the gp100 peptide for 48 hours and radiolabeled for 6 hours. The percentages of proliferation were plotted as means ± SEM. I, Effect of T-cell depletion with an antibody to mouse CD8x on tumor size. The size of tumor was measured and recorded starting from days 11 to 22, and data were plotted as means ± SEM. J, Tumor weights from I on day 22 were plotted as means ± SEM.
Disclosure of Potential Conflicts of Interest
A. Hashimoto is a senior researcher at Daiichi Sankyo Co., Ltd. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions
Conception and design: C.-H.A. Tang, S. Chang, C.-C.A. Hu
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): C.-H.A. Tang, A. Hashimoto, Y.-J. Chen, A.R. Mato, J.R. Del Valle, D.I. Gabrilovich, C.-C.A. Hu
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): C.-H.A. Tang, S. Chang, A. Hashimoto, A.R. Mato, C.-C.A. Hu
Writing, review, and/or revision of the manuscript: C.-H.A. Tang, S. Chang, A. Hashimoto, A.R. Mato, J.R. Del Valle, D.I. Gabrilovich, C.-C.A. Hu

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): C.-H.A. Tang, S. Chang, Y.-J. Chen, C.-C.A. Hu
Study supervision: C.-H.A. Tang, C.-C.A. Hu

Acknowledgments
This study was supported by NIH/NCI grants (R01CA1639310, R21CA199553, R01CA190860, and R01CA144488). The authors thank Elizabeth Chatburn for her assistance in consenting CLL patients.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 11, 2017; revised February 6, 2018; accepted April 5, 2018; published first April 12, 2018.

References

www.aacrjournals.org
Cancer Immunol Res; 6(6) June 2018
709

Downloaded from cancerimmunolres.aacrjournals.org on December 3, 2021. © 2018 American Association for Cancer Research.
Cancer Immunology Research

Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice

Chih-Hang Anthony Tang, Shiun Chang, Ayumi Hashimoto, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-17-0582

Supplementary Material
Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2018/04/12/2326-6066.CIR-17-0582.DC1

Cited articles
This article cites 49 articles, 28 of which you can access for free at:
http://cancerimmunolres.aacrjournals.org/content/6/6/696.full#ref-list-1

Citing articles
This article has been cited by 3 HighWire-hosted articles. Access the articles at:
http://cancerimmunolres.aacrjournals.org/content/6/6/696.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerimmunolres.aacrjournals.org/content/6/6/696.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.