A Sampling of Highlights from the Literature

Seeking Synergy of Checkpoint Blockade through TGFβ Inhibition
Ellen Puré
See related article, p. 1459.

The Balancing Act between Cancer Immunity and Autoimmunity in Response to Immunotherapy
Arabella Young, Zoe Quandt, and Jeffrey A. Bluestone

Clinical Significance of Pancreatic Atrophy Induced by Immune-Checkpoint Inhibitors: A Case-Control Study
Yael Eshet, Erez Nissim Baruch, Ronnie Shapira-Frommer, Yael Steinberg-Silman, Teodor Kuznetsov, Guy Ben-Betzalel, Sameh Daher, Iris Gluck, Nethanel Asher, Sara Aptar, Jacob Schachter, Jair Bar, Ben Boursi, and Gal Markel

Melanoma-associated fibroblasts contributed to checkpoint blockade resistance via MMP-9–dependent PD-L1 cleavage and influenced the impact of TGFβ inhibition on responses to anti–PD-1. These findings highlight the importance of understanding immunotherapy effects on the tumor microenvironment.
See related Spotlight, p. 1444.

Phage-Based Anti-HER2 Vaccination Can Circumvent Immune Tolerance against Breast Cancer
Caterina Bartolacci, Cristina Andreani, Claudia Curcio, Sergio Occhipinti, Luca Massacesi, Mirella Giovarelli, Roberta Galeazzi, Manuela Iezzi, Martina Tilio, Valentina Gambini, Junbiao Wang, Cristina Marchini, and Augusto Amici

Combination Therapy Using Ruxolitinib and Oncolytic HSV Renders Resistant MPNSTs Susceptible to Virotherapy
Mohammed G. Ghonime and Kevin A. Cassady

A screening tool capable of high-throughput identification of compounds and genes affecting antitumor responses is presented. Specific EGFR inhibitors were identified and validated as enhancing T cell–mediated killing of tumor cells, providing a proof-of-principle for this approach.
1524 Altered Binding of Tumor Antigenic Peptides to MHC Class I Affects CD8⁺ T Cell–Effector Responses
Influence of T-cell priming on effector antitumor responses was evaluated. Loss of secondary contacts between a peptide non-anchor residue and MHC skews effector functions to favor cytotoxicity over cytokine production in T cells specific for a melanoma self-antigen.

1537 NK Cell Education in Tumor Immune Surveillance: DNAM-1/KIR Receptor Ratios as Predictive Biomarkers for Solid Tumor Outcome
Concepción F. Guillamón, María V. Martínez-Sánchez, Lourdes Gimeno, Anna Mrowiec, Jerónimo Martínez-García, Gerardo Server-Pastor, Jorge Martínez-Escribano, Amparo Torroba, Belén Ferri, Daniel Abellán, José A. Campillo, Isabel Legaz, María R. López-Alvarez, María Rosa Moya-Quiles, Manuel Muro, and Alfredo Minguela
Solid tumors modulate the expression of molecules induced by licensing interactions during NK-cell education and alter their function. Expression of these molecules can predict patient survival and have implications in the design of NK cell-based therapies.

1548 PD-L1 Mediates Dysfunction in Activated PD-1⁺ NK Cells in Head and Neck Cancer Patients
Fernando Concha-Benavente, Benjamin Kansy, Jessica Moskovitz, Jennifer Moy, Uma Chandran, and Robert I. Ferris
PD-1 expression and function were assessed in NK cells from patients with head and neck cancer. NK cell dysfunction was reversed by PD-1 blockade and improved responses to cetuximab therapy, thus, providing an approach to reverse tumor immune evasion.

1561 Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs
The HDAC inhibitor, entinostat, impairs myeloid immunosuppressive function, and in combination with immune checkpoint inhibitors, improves T-cell responses in models of breast and pancreatic cancers. These data provide rationale for combination therapy in patients to improve antitumor responses.

1578 Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs That Induce a Treg/Th17 Cell Imbalance in Epithelial Ovarian Cancer
Jieru Zhou, Xiaoduan Li, Xiaoli Wu, Ting Zhang, Qinyi Zhu, Xinjing Wang, Husheng Wang, Kai Wang, Yingying Lin, and Xipeng Wang
The Treg/Th17 ratio is altered in epithelial ovarian cancer. Exosomal miRNAs from tumor-associated macrophages contribute to this T-cell imbalance, which promotes an immune suppressive tumor microenvironment and favors progression and metastasis of epithelial ovarian cancer cells.

ABOUT THE COVER
Poor clinical outcome in cancer patients is associated with the presence of cancer-associated fibroblasts (CAFs). However, fibroblasts are heterogenous and can have different functions, and whether CAFs directly interact with and impact T cells in the tumor microenvironment remains to be determined. Cremasco and Astarita et al. show that two populations of FAP⁺ mesenchymal stromal cells exist in breast cancer tumors from humans and mice: those that express podoplanin (PDPPN⁺ CAFs) and those that do not (cancer-associated pericytes; CAPs). Each population has a distinctive gene signature and localization within tumors, and FAP⁺ PDPPN⁺ CAFs were shown to suppress T cells, whereas FAP⁺ PDPPN⁻ CAPs were not immunosuppressive. These data highlight how different FAP⁺ stromal cell populations can modulate the breast cancer tumor microenvironment. Read more in this issue on page 1472. Original image from Supplementary Fig. S1E. Artwork by Lewis Long.
Cancer Immunology Research

6 (12)


| Updated version | Access the most recent version of this article at: http://cancerimmunolres.aacrjournals.org/content/6/12 |

| E-mail alerts | Sign up to receive free email-alerts related to this article or journal. |
| Reprints and Subscriptions | To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org. |
| Permissions | To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/6/12. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site. |