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Abstract

Next-generation sequencing technologies have provided
insights into the biology and mutational landscape of cancer.
Here, we evaluate the relevance of cancer neoantigens in human
breast cancers. Using patient-derived xenografts from three
patients with advanced breast cancer (xenografts were designated
as WHIM30, WHIM35, and WHIM37), we sequenced exomes
of tumor and patient-matched normal cells. We identified
2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37)
nonsynonymous somatic mutations. A computational analysis
identified and prioritized HLA class I-restricted candidate neoan-
tigens expressed in the dominant tumor clone. Each candidate

Introduction

Next-generation sequencing technologies have transformed
our understanding of how somatic mutations contribute to
cancer initiation and progression. Improvements in instrument
performance together with cost reductions have enabled a
systematic analysis of the mutational landscape in a variety of
cancer types. The results provide opportunities to personalize
therapy. In preclinical models, cancer neoantigens can be
identified by next-generation sequencing, and neoantigens can
be prioritized by epitope prediction algorithms. Some neoanti-
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neoantigen was evaluated using peptide-binding assays, T-cell
cultures that measure the ability of CD8" T cells to recognize
candidate neoantigens, and preclinical models in which we mea-
sured antitumor immunity. Our results demonstrate that breast
cancer neoantigens can be recognized by the immune system, and
that human CD8™ T cells enriched for prioritized breast cancer
neoantigens were able to protect mice from tumor challenge with
autologous patient-derived xenografts. We conclude that next-
generation sequencing and epitope-prediction strategies can iden-
tify and prioritize candidate neoantigens for immune targeting in
breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.

gens are targets for checkpoint blockade therapy and person-
alized vaccine therapy (1-3). Ongoing clinical trials confirm
the importance of cancer neoantigens in the response to ther-
apies based on immune checkpoint inhibitors or personalized
vaccines in non-small cell lung cancer, melanoma, and colo-
rectal cancers with DNA mismatch repair deficiency (4-9).
Here, we explored neoantigens in breast cancer, which generally
does not carry a high mutational load.

Materials and Methods

Human subjects

All human subjects' research was reviewed and approved by
the Human Subjects Committee at Washington University
School of Medicine. Three advanced-stage breast cancer
patients participated in these studies. Each subject consented
to tissue banking and establishment of patient-derived xeno-
grafts (PDX). PDXs were established in NSG mice (10) and
early-generation tumors were flash frozen. Each subject also
consented to leukapheresis. The subjects were designated
WHIM30, WHIM35, and WHIM37 based on the designation
of their PDX. Leukapheresis was performed at Barnes Jewish
Hospital. Peripheral blood mononuclear cells (PBMC) were
isolated through density centrifugation using Ficoll-Paque
PLUS and cryopreserved as cell pellets. Each subject consented
to genome sequencing. Aliquots of PBMCs were frozen as cell
pellets. DNA from PDX tumors and PBMC was extracted using
the QIAamp DNA Mini Kit (Qiagen Sciences) and RNA from
PDX tumors was extracted using the High Pure RNA Paraffin
kit (Roche). DNA and RNA quality was determined using a
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Nanodrop 2000 and quantitated using a Qubit Fluorometer
(Life Technologies).

Exome sequencing

For each subject, tumor and normal matched DNA samples
were processed for whole-exome sequencing using standard pro-
tocols for Kapa Biosystems NGS libraries with corresponding
barcoded adapters. The libraries were quantitated and combined
at equimolar ratios into an exome capture using the Roche
Nimblegen EZ Exome version 3.0 reagent. Exome sequence data
were generated as 2 x 100 bp read pairs on an Illumina HiSeq2000
instrument. Our Genome Modeling System (GMS; ref. 11) was
used to align exome reads and identify somatic variants. The
analysis pipeline uses BWA (version 0.5.9; ref. 12) for alignment
with default parameters except for the following: —t 4 —q 5. All
alignments were against GRCh37-lite-build37 of the human
reference genome and were merged and subsequently de-dupli-
cated with Picard (version 1.46). Detection of somatic mutations
was performed using a combination of different variant callers,
including SAMtools (13, 14), Somatic Sniper (15), VarScan
Somatic (16, 17), and Strelka (18).

cDNA-capture sequencing

All RNA samples were DNase-treated with a TURBO DNA-
free kit (Invitrogen) as per the manufacturer's instructions. RNA
integrity and concentration were assessed using an Agilent
Eukaryotic Total RNA 6000 assay (Agilent Technologies) and
a Quant-iTTM RNA assay kit on a QubitTM Fluorometer (Life
Technologies Corporation). The MicroPoly(A)PuristTM Kit
(Ambion) was used to enrich for poly(A) RNA from three
WHIM patients DNAse-treated total RNA, and the resulting
RNA was converted to ¢cDNA using the Ovation RNA-Seq
System V2 (NuGen, 20 ng of either total or polyA RNA). All
NuGen cDNA sequencing libraries were generated using NEB-
Next UltraTM DNA Library Prep Kit for Illumina as described
previously (19). Each library ligation reaction was PCR-opti-
mized using the Eppendorf Epigradient S qPCR instrument,
and PCR-amplified for limited cycle numbers based on the Ct
value identified in the optimization step. Libraries were quan-
titated using the Quant-iTTM dsDNA HS Assay (Life Techno-
logies) and for size using the BioAnalyzer 2100 (Agilent
Technologies). The Illumina-ready libraries were enriched
using the Nimblegen SeqCap EZ Human Exome Library v3.0
reagent. Each hybridization reaction was incubated at 47°C for
72 hours, and single-stranded capture libraries were recovered
and PCR-amplified per the manufacturer's protocol. Post-cap-
ture library pools were sized and purified with AmpureXP
magnetic beads to remove residual primer dimers and to enrich
for a library fragment distribution between 300 and 500 bp,
then diluted to 2 nmol/L prior to lllumina paired-end sequen-
cing. Paired-end reads were trimmed with flexbar v 2.21
(params: -adapter CTTTGTGTITGA -adapter-trim-end LEFT
-nono-length-dist -threads 4 -adapter-min-overlap 7 -max-
uncalled 150 -min-readlength 25) to remove single primer
isothermal amplification adapter sequences The resulting reads
were analyzed with a pipeline that included Tophat v2.0.8
(params: -bowtie-version = 2.1.0 for Ovation; -library-type
fr-firststrand - bowtie-version = 2.1.0 for Truseq; ref. 2).
Expression levels (FPKM) were calculated with Cufflinks
v2.0.2 (params-max-bundle-length=10000000-num-threads
4). cDNA capture data were reviewed visually to evaluate the
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expression of mutations identified by exome data and neo-
antigen prediction pipeline from pVacSeq. Both cDNA-capture
(Alt-read number) and FPKM values were considered for can-
didate neoantigen prioritization.

HLA typing
The subject's HLA type was determined by PCR-SSOP
(ProImmune).

Neoantigen identification

We developed a pipeline for the identification and prioriti-
zation of potential neoantigens resulting from the somatic
missense mutations detected from exome sequencing analysis.
Briefly, thresholds for filtering (binding- and coverage-based)
using both the exome and cDNA-cap sequencing data detailed
above were used to compile a list of expressed somatic missense
mutations. Next, amino-acid substitutions corresponding to
each of the coding missense mutations were translated into a
21-mer amino acid FASTA sequence, with 10 amino acids
flanking the substituted amino acid on each side. For each
patient, these 21-mer amino-acid sequences were evaluated
through the HLA class I peptide-binding algorithm NetMHC
v3.2 (20, 21) to identify high-affinity neoantigens predicted
to bind with high affinity to the patient's HLA alleles. We
similarly evaluated the corresponding wild-type sequences to
compare differences in predicted binding affinities, wherein
any candidate neoantigens with a predicted binding affinity
ICsq value < 500 nm were considered for further evaluation.
This pipeline evolved into the pVAC-Seq pipeline (2) pipeline
for identification of candidate neoantigens.

Sanger sequencing of DNA samples

DNA of patient PBMCs: xenograft and parental tumor tissue
was extracted with Qiagen QIAamp DNA Mini Kit and AllPrep
DNA/RNA FFPE Kit, respectively. Primers were designed with
Primer-3. PCR reactions were carried out in 20 UL with 40 ng of
DNA according to the manufacturer's recommendation of Phu-
sion High-Fidelity DNA Polymerase (ThermoFisher Scientific).
PCR products were purified with QIAquick gel extraction
(Qiagen) followed by sequencing (GeneWiz).

Peptides

Peptides were obtained lyophilized from Peptide 2.0 Inc.
(>95% purity) and were dissolved in sterile water or in 10%
DMSO dependent on the amino acid sequence.

Mice

NOD SCID gamma (NSG) mice were purchased from The
Jackson Laboratory and housed in a specific pathogen-free animal
facility. All in vivo experiments used 8- to 12-week-old female NSG
mice. All studies were performed in accordance with procedures
approved by the AAALAC-accredited Animal Studies Committee
of Washington University in St. Louis.

Flow cytometry

The following anti-human monoclonal antibodies (mAb) were
used for cell surface staining: CD3-APC-Cy?7 (clone: OKT3), CD4-
FITC (clone: OKT4), CD8-AF700 (clone: SK1), and CD45-BV785
(clone: HI30). All antibodies were obtained from BioLegend.
Samples were analyzed on an LSR Fortessa flow cytometer (BD
Biosciences), and data were analyzed using Flow]Jo software.
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Peptide binding assay

Binding of synthetic peptides was assessed by measuring induc-
tion of surface expression of HLA class I molecules: Peptide
binding to several commonly expressed human class I alleles was
determined using T2 cells and genetically modified T2 cells,
specifically T2-A3 (kindly provided by Dr. Storkus from
UPMC/UPC) and T2-B7 cells (kindly provided by Dr. Lutz,
University of Kentucky). Following an established protocol
(22) with a few modifications, peptides (100 umol/L) were
incubated with T2, T2-A3, or T2-B7 cells in serum-free RPMI at
room temperature for 1 hour, then transferred to 28°C in a CO,
incubator. The following day, cells were stained with HLA allele—
specific mAb (anti-HLA-A2 (BD Pharmingen); anti-HLA-A3 (BD
Pharmingen); and anti-HLA-B7 (provided by Dr. Ted Hansen),
and analyzed by flow cytometry.

In vitro T-cell analysis

In vitro studies to evaluate the immunogenicity of candidate
neoantigens was performed using patients' autologous PBMC.
Briefly, PBMCs were cultured with individual peptides corre-
sponding to candidate neoantigens at 50 pug/mL in RPMI with
5% human serum, 10 units/mL penicillin-streptomycin, 10
mmol/L HEPES buffer, 2 mmol/L 1-glutamine, 1 x nonessential
amino acid. IL2 (50 U/mL) was added every 2 days. Control
PBMCs were stimulated with peptides corresponding to known
viral antigens. On day 12, the peptide and tumor reactivity of the T
cells was determined by IFNy ELISPOT assay. Cultured T cells were
stimulated with peptide pulsed or autologous tumor-pulsed,
irradiated autologous PBMC in the ELISPOT plate followed by
20-hour incubation at 37°C. Developed spots were counted in an
ELISPOTreader (C.T.L.). In a different set of experiments, patients’
PBMCs were cultured with irradiated autologous tumor cells
instead of neoantigens for 12 days, as above. Tumor-primed
T cells were tested for recognition of neoantigens by IFNy
ELISPOT assay.

In vivo T-cell analysis

PDX tumor cells were subcutaneously injected into immuno-
deficient NSG mice (1 x 10° cells per mouse). When tumors
became palpable (around 3-4 mm in dimension), 5 x 10°
PBMCs stimulated with prioritized neoantigens or control viral
antigens were transferred weekly into tumor-bearing NSG mice
through tail-vein injection (23-25). Mice were observed daily and
tumor size was measured every 2 days. In selected cases, PDX
tumor-bearing NSG mice were sacrificed at 30 days, and periph-
eral blood and tumor were harvested from each mouse. Tumor
tissue was processed into a single-cell suspension through
mechanical (Miltenyi gentle MACS) and enzymatic dissociation

Table 1. Overview of identified neoantigens

followed by filtration through a 70 umol/L cell strainer. The
single-cell suspension and PBMCs were stained for immune
subsets followed by flow cytometry. Functional analysis was
performed by the IFNy ELISPOT assay using neoantigen peptides
identified from each patient.

Statistical analyses
Samples were compared using an unpaired, two-tailed Student
t test, unless specified.

Results

To determine whether breast cancer neoantigens can be
targeted with immunotherapy, we established patient-derived
xenografts from 3 patients with advanced breast cancer, desig-
nated WHIM30, WHIM35, and WHIM37 (Supplementary Table
S1 and Supplementary Fig. S1). We sequenced tumor and
normal whole exomes and identified 2091 (WHIM30), 354
(WHIM35), and 235 (WHIM37) nonsynonymous single-nucle-
otide variant (SNV) mutations using a published somatic var-
iant pipeline (Table 1; Supplementary Tables S2-S4; ref. 11).
We filtered the results of this pipeline analysis using stringent
criteria for tumor and normal read coverage, applying a min-
imal variant allele frequency (VAF) of 40%. This filter priori-
tized 74 (WHIM30), 33 (WHIM37), and 55 (WHIM37) candi-
date neoantigens from the dominant tumor clone of the
patient-derived xenografts. We next examined cDNA-capture
sequencing from the tumor RNA (3), to confirm that each
mutant allele that was identified by our DNA-based analysis
was expressed in RNA, and to exclude any gene represented at
fewer than 1 fragment per kilobase of transcripts per million
mapped reads (FPKM; Supplementary Table S5). We also gen-
erated HLA typing data for each patient using PCR-SSOP (Sup-
plementary Table S6). We selected nonsynonymous SNV muta-
tions with a predicted binding affinity to the restricting HLA
alleles of <500 nmol/L. The final prioritized candidate neoanti-
gens and their corresponding peptide sequences (Supplemen-
tary Tables S7-S9) were pursued for further study.

Peptides corresponding to the candidate neoantigens were
synthesized and assessed for binding to the corresponding HLA
class I allele using T2 cells (HLA-A02:01), and genetically mod-
ified T2 cells expressing HLA-A03:01 or HLA-B07:02 (26). Of the
18 peptides tested, 15 (83%) bound to the predicted HLA allele
(Table 1; stabilization of MHC expression was measured by flow
cytometry, Supplementary Fig. S2). To evaluate the ability of
autologous T cells to recognize the candidate neoantigens in vitro,
we cocultured peptides corresponding to the candidate neoanti-
gens with corresponding autologous PBMCs for 12 days in the

Number of tier Number of mutations

Number predicted

Number actually Number immunogenic Number conferring

Patient 1 mutations® expressed® to bind® binding/tested* in vitro® tumor recognition’
WHIM30 2,091 15 9 7/8 2/9 2/2
WHIM35 354 8 8 3/3 /7 N
WHIM37 235 n 8 6/8 1/8 14

2As determined by whole-exome sequencing and from each patient xenograft.

®As determined by cDNA Cap-Seq and other filters described in Materials and Methods.

“As determined by NetMHC 3.2 (affinity of mutant peptides < 500 nmol/L).

9Binding assay evaluated using the T2 assay.

®Reactivity as determined by IFNy ELISPOT assay in vitro as described in Materials and Methods.

fReactivity as determined by tumor growth inhibition in the NSG mouse model in vivo as described in Materials and Methods.
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Figure 1.

Identification and validation of candidate neoantigens. Autologous PBMCs were stimulated with candidate breast cancer neoantigens for 12 days. CD8* T-cell
IFNy ELISPOT assays were performed on day 12 by coculturing stimulated PBMCs overnight with autologous, irradiated PBMCs pulsed with the
candidate neoantigens (black) or irradiated PDX tumor cells (white). The immune response induced by candidate neoantigens and PDX tumor cells is
shown in (A) WHIM30, (B) WHIM35, and (C) WHIM37. Negative controls in the ELISPOT assays included responder T cells cultured with no peptide (number of
spot-forming cells per 10° cells was 50-120) or irrelevant peptide (number of spot-forming cells per 10° cells was 250-400). The background with
irrelevant peptide was subtracted from the experimental condition in each case. To confirm the specificity of the immune response induced by
candidate neoantigens, CD8" T-cell IFNy ELISPOT assays were performed against mutant (black) and wild-type peptides (white) after 12-day
stimulation with mutant peptides. The results are shown in (D) WHIM30, (E) WHIM35, and (F) WHIM37. Data are presented as means & SEM (n = 3 wells
per peptide in ELISpot assay) and are representative of three independent experiments. Samples were compared using unpaired, two-tailed Student

test (*, P < 0.05; **, P < 0.01); SFC, spot-forming cells.

presence of IL2, after which the T-cell response to each peptide was
assessed in an IFNy ELISPOT assay. Two of nine (22%) WHIM30
candidate neoantigens (PALB2 and ROBO3) induced significant
peptide-specific T-cell responses (*, P < 0.05; **, P < 0.01,
respectively; Table 1; Fig. 1A). One of eight (12.5%) WHIM35
candidate neoantigens (PTPRS), and one of eight (12.5%) WHIM
37 candidate neoantigens (ZDHHC16) also induced significant
peptide-specific CD8" T-cell responses (*, P < 0.05; **, P < 0.01,
respectively; Table 1; Fig. 1B and C). The same candidate neoanti-
gens induced 1.6-3 times increased CD8" T-cell responses com-
pared with control peptides after autologous mixed lymphocyte-
tumor cultures using PBMC and irradiated PDX-tumor cells
(Supplementary Fig. S3).

To further characterize the specificity of the T-cell response to
the prioritized breast cancer neoantigens, we stimulated each
patient's PBMC with peptides corresponding to the mutant anti-
gens for 12 days, then measured response to the antigens by IFNy
ELISPOT assays. Mutant PALB2-stimulated T cells did not cross-
react with wild-type PALB2 (Fig. 1D). A similar pattern of reac-
tivity was observed with the other breast cancer neoantigens:
mutant, but not wild-type, ROBO3 (Fig. 1D), PTPRS (Fig. 1E),
and ZDHHC16 (Fig. 1F) induced T-cell responses. These T-cell
responses were not cross-reactive with the corresponding wild-
type antigens. The recognition of mutant antigens was HLA
restricted, as both allele-specific and HLA class I framework
antibodies significantly reduced IFNYy secretion (*, P < 0.05; **,
P < 0.01, respectively; Supplementary Fig. S4).
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Two breast cancer neoantigens, PTPRS and ZDHHCI16, are
HLA-A02:01 restricted. We tested the immunogenicity of these
neoantigens in HHD mice. HHD mice are transgenic for a mutant
form of HLA-A2:01 that can interact with murine CD8 molecules,
but they lack murine MHC class I alleles. HHD mice were
immunized with mutant PTPRS or ZDHHC16 peptide plus poly
I:C. The neoantigen-specific T-cell response was then measured by
IFNy ELISPOT. The mutant PTPRS and ZDHHC16 peptides, but
not other HLA-A02:01-specific breast cancer neoantigens,
induced a 3 to 6 times increasedneoantigen-specific immune
response (Supplementary Fig. S5).

To assess whether neoantigen-specific CD8" T cells can recog-
nize tumors, PBMCs cultured in vitro in the presence of mutant
peptides were tested for reactivity against autologous tumor cells
in IFNy ELISPOT assays. Both PALB2- and ROBO3-specific T cells
(WHIM30) recognized WHIM30 tumor cells (Fig. 1A). Similarly,
PTPRS-specific T cells (WHIM35) and ZDHHC16-specific T cells
(WHIM37) recognized WHIM35 and WHIM37 tumor cells,
respectively (Fig. 1B and C). In contrast, PBMC cultured with
control peptides, including an immunogenic peptide derived
from mammaglobin-A (27), an immunodominant viral peptide,
or EML2, an HLA-A02:01-binding but nonimmunogenic mutant
peptide (WHIM30), did not recognize tumor cells. PBMCs stim-
ulated with control peptides were responsive to the control
peptides, except peptide EML2, which is a nonimmunogenic
neoantigen. Thus, neoantigen-specific CD8* T cells do recognize
their cognate tumors.
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Breast cancer neoantigens might be useful as targets for
personalized cancer vaccines or other immunotherapeutic
strategies. Here, we assessed whether neoantigen-specific
CD8™" T cells are associated with antitumor immunity in vivo.
We began by implanting WHIM30 tumor sections subcutane-
ously in immune-compromised NOD SCID gamma (NSG)
mice. After tumors became palpable, 5 x 10°-10 x 10°
autologous PBMC stimulated in vitro with PALB2, ROBO3 or

control CMV peptides were adoptively transferred into tumor-
bearing mice. Adoptive transfer was repeated every 7 days.
Tumor growth was measured every 2 days. Adoptive transfer
of autologous PBMC stimulated with PALB2 and ROBO3 was
associated with decreased tumor growth, whereas adoptive
transfer of PBMC stimulated with CMV had no impact on
tumor growth (Fig. 2A and C). Adoptive transfer of autologous
PBMC from patient WHIM35 stimulated in vitro with PTPRS
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but not FluM1 peptide decreased WHIM 35 tumor growth
(P < 0.05; Fig. 2B and D).

To understand the mechanism of action of tumor rejection
following adoptive transfer, we isolated tumor-infiltrating
lymphocytes (TIL) from rejecting tumors and assayed them
ex vivo by IFNy ELISPOT. TILs from rejecting WHIM30 tumors
generated IFNY in response to both mPALB2 and mROBO3
(Fig. 2E). TILs from rejecting WHIM 35 tumors generated IFNy
in response to mPTPRS (Fig. 2F). In both cases, no response
to control peptides was observed. Phenotypic analysis of
TIL confirmed the presence of neoantigen-stimulated T cells
in rejecting tumors. In contrast, no T cells were detectable in
growing tumors following the adoptive transfer of control, viral
antigen-stimulated T cells (Fig. 2G and H).

Sanger sequencing results showed that the PTPRS mutation
(G to A) was present in the WHIM35 parental tumor as well as
in the WHIM35 PDX tumor, but not in the patient's PBMC.
DNA degradation in parental WHIM 30 and WHIM37 tumors
prevented detection of neoantigens.

Discussion

We have used next-generation sequencing and computa-
tional analysis to identify and prioritize candidate breast
cancer neoantigens. Some of these candidate neoantigens were
recognized by the immune system, thus presenting potential
targets for cancer immunotherapy. Successful design of preci-
sion vaccines for treatment of human cancer will depend on
rapid identification and prioritization of candidate neoanti-
gens (1-4, 28-30). Based on the data presented here, we have
initiated two phase I clinical trials testing neoantigen DNA and
synthetic long-peptide vaccines in patients with triple-negative
breast cancer (TNBC; NCT02348320 and NCT02427581,
respectively).

TNBC lacks expression of estrogen receptor, progesterone
receptor, and HER2 and follows an aggressive clinical course.
Clonal and mutational analysis of primary TNBC suggests that
TNBC is characterized by a higher mutational frequency than
other breast cancer subtypes (31-33). The relative abundance
of somatic mutations in TNBC suggests that neoantigens are
more likely to be present in this breast cancer subtype. Here, we
observed that WHIM30, derived from a patient with TNBC, had
over 2000 somatic mutations. We identified and credentialed
two candidate neoantigens using algorithms designed to pri-
oritize neoantigens from the dominant tumor clone, followed
by in vitro and in vivo immune assays. WHIM35 and WHIM37
are luminal subtype breast cancers, with correspondingly lower
mutational loads than WHIM30. Nonetheless, we identified
and credentialed neoantigens in both these tumors, consistent
with recent reports that human tumors containing limited
mutations harbor neoantigens that can be targeted by immune
therapies (34).

The limited number of neoantigens identified in TNBC may
be a shortcoming of our identification process or may be related
to the underlying biology of TNBC. Our sequencing and epi-
tope prediction algorithms are similar to those of other inves-
tigators: we identified somatic missense mutations through
exome sequencing of tumor and normal tissue, followed by
expression analysis by RNA sequencing, as many mutations are
not expressed. Our final step toward identification of candidate
neoantigens involved the use of computer algorithms that
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predict which mutations can give rise to peptides that can be
presented by the patient's HLA alleles (30, 35, 36). Preclinical
studies performed to date suggest that the majority of candidate
neoantigens, i.e., those that are expressed and predicted to bind
with high affinity, do not trigger detectable T-cell responses. For
example, of the top 62 predicted binding epitopes, only 2
conferred tumor rejection in a mouse sarcoma model (1).
Likewise, Verdegaal and colleagues (37) identified 501 and
226 nonsynonymous mutations in two patients with advanced
melanoma, respectively, but only 2 of 501 and 3 of 226
triggered antigen-specific CD8" T cells. Relevant data from
human breast cancers are not readily available. In the studies
presented here we validated one or two neoantigens per patient
out of eight to nine candidate neoantigens in the dominant
tumor clone. Although the number of validated neoantigens is
similar to that in other studies, the number of candidate
neoantigens is substantially lower. We used a stringent variant
allele frequency of 40%; lowering this number increases the
number of candidate neoantigens.

It is too early to assess the clinical importance of targeting
neoantigens. Immune therapy has heretofore emphasized
induction or enhancement of immune responses to tumor-
associated antigens such as HER2, MUC1, mammaglobin-A,
and others (38, 39). Although clinical responses have been
observed with vaccines targeting tumor-associated breast
cancer antigens (27, 38, 40), there is also evidence for a
positive correlation between the number of candidate neoan-
tigens and patient survival (41). Perhaps targeting a combi-
nation of both types of antigens will confer the greatest
clinical benefit.

Our results support targeting neoantigens using vaccine-
based immunotherapy in breast cancer. Although cancer
neoantigens are targets for immune checkpoint-inhibitor ther-
apies (1, 42), we here show their concurrent value for person-
alized vaccine therapy, extending the results obtained in a
murine sarcoma model (1). Personalized vaccine therapy may
provide many of the benefits of immune checkpoint inhibitor
therapy with decreased risk of autoimmunity and other severe
adverse events. Finally, our studies suggest that a combination
of genomic, computational, and in vitro functional assays can
be used to identify, prioritize, and validate candidate breast
cancer neoantigens, thereby facilitating clinical translation of
this approach.
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