WHAT WE'RE READING

271 What We're Reading

OBITUARY

272 George Klein (1925–2016)
A Prescient, Luminous Voice
Pramod K. Srivastava

MASTERS OF IMMUNOLOGY

274 About the Masters

275 Masterful Antibodies: Checkpoint Blockade
Nils Lonberg and Alan J. Korman

MEETING REPORT

282 Report on the FDA-AACR Immuno-oncology Drug Development Workshop
Colleen Curran and Elad Sharon

CANCER IMMUNOLOGY MINIATURES

286 Diagnostic Comparison of CT Scans and Colonoscopy for Immune-Related Colitis in Ipilimumab-Treated Advanced Melanoma Patients

Clinical Impact of Tumor DNA Repair Expression and T-cell Infiltration in Breast Cancers

This study provides clinical evidence that the interplay between DNA repair, CD8+ T cells, and expression of PD-L1 and PD-1 can promote aggressive tumor phenotypes. XRCC1-directed personalization of immune checkpoint inhibitor therapy may be feasible in breast cancer.

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li

NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases

RESEARCH ARTICLES

300 Clinical Impact of Tumor DNA Repair Expression and T-cell Infiltration in Breast Cancers

This study provides clinical evidence that the interplay between DNA repair, CD8+ T cells, and expression of PD-L1 and PD-1 can promote aggressive tumor phenotypes. XRCC1-directed personalization of immune checkpoint inhibitor therapy may be feasible in breast cancer.

Clinical Impact of Tumor DNA Repair Expression and T-cell Infiltration in Breast Cancers

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li

NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li

NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li

NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.

Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li

NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.
Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells

Lung cancer cells exposed to granulocyte serine proteases increased the presentation of both endogenous peptides and the exogenous, protease-derived, HLA-A2–restricted PR1 peptide. Circulating CTLs specific for these peptides were identified in lung cancer patients.

Promoter Methylation Modulates Indoleamine 2,3-Dioxygenase 1 Induction by Activated T Cells in Human Breast Cancers
Satish K. Noonepalle, Franklin Gu, Eun-Joon Lee, Jeong-Hyeon Choi, Qimei Han, Jaejik Kim, Maria Ouzounova, Austin Y. Shull, Lirong Pei, Pei-Yin Hsu, Ravindra Kolhe, Fang Shi, Jiseok Choi, Katie Chiou, Tim H.M. Huang, Hasan Korkaya, Libin Deng, Hong-Bo Xin, Shuang Huang, Muthusamy Thangaraju, Arun Sreekumar, Stefan Ambs, Shou-Ching Tang, David H. Munn, and Huidong Shi

Triple-negative breast cancers (TNBCs) are often infiltrated by T cells. These tumors counteracted T-cell activity through hypomethylated IDO1 promoters and increased IDO1 expression in response to IFNγ, providing a rationale for treatment of TNBC with IDO inhibitors.