WHAT WE'RE READING

271 What We're Reading

OBITUARY

272 George Klein (1925–2016)
A Prescient, Luminous Voice
Pramod K. Srivastava

MASTERS OF IMMUNOLOGY

274 About the Masters

275 Masterful Antibodies: Checkpoint Blockade
Nils Lonberg and Alan J. Korman

MEETING REPORT

282 Report on the FDA-AACR Immuno-oncology Drug Development Workshop
Colleen Curran and Elad Sharon

CANCER IMMUNOLOGY MINIATURES

286 Diagnostic Comparison of CT Scans and Colonoscopy for Immune-Related Colitis in Ipilimumab-Treated Advanced Melanoma Patients

RESEARCH ARTICLES

292 Clinical Impact of Tumor DNA Repair Expression and T-cell Infiltration in Breast Cancers
This study provides clinical evidence that the interplay between DNA repair, CD8+ T cells, and expression of PD-L1 and PD-1 can promote aggressive tumor phenotypes. XRCC1-directed personalization of immune checkpoint inhibitor therapy may be feasible in breast cancer.

300 Induction of NKG2D Ligands on Solid Tumors Requires Tumor-Specific CD8+ T Cells and Histone Acetyltransferases
Jiemiao Hu, Chantale Bernatchez, Liangfang Zhang, Xueqing Xia, Eugenie S. Kleinerman, Mien-Chie Hung, Patrick Hwu, and Shulin Li
NKG2D-mediated immune surveillance is crucial for inhibiting tumor growth and metastases, but tumors often downregulate NKG2D ligands. A therapeutic strategy to restore tumor-specific expression of NKG2D ligands on solid tumors was developed that induced tumor regression and increased survival.

312 Comprehensive Meta-analysis of Key Immune-Related Adverse Events from CTLA-4 and PD-1/PD-L1 Inhibitors in Cancer Patients
A meta-analysis of immune checkpoint therapies showed a small but significant increase in the risk of developing key immune-related adverse events of any grade, as well as selected high-grade gastrointestinal and liver toxicities.
About the Cover

Lung cancer tumors recruit macrophages and granulocytes, which then secrete serine proteases like elastase and proteinase 3. These enzymes are then internalized by the tumor cells, which causes a cascade of events. The proteases both contain a peptide sequence, PR1, that was presented on the lung cancer cell surface HLA-A2 and recognized by antitumor cytotoxic T cells (CTLs). These proteases also induced production of a unique set of endogenous peptides by the tumor cells. CTLs specific for these novel antigens were enriched in lung cancer patients. Read more in the research article by Peters and colleagues on page 319, in this issue of Cancer Immunology Research. The confocal micrograph portrays a corona of PR1 peptide–HLA-A2 (yellow) on the surface of lung H2023 cancer cells and nuclei stained blue with DAPI. Micrograph from the laboratory of Dr. J.J. Molldrem. Artwork by Lewis Long.
Updated version
Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/5/4

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/5/4. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>