Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion

Kim De Veirman1, Nathan De Beule1, Ken Maes1, Eline Menu1, Elke De Bruyne1, Hendrik De Raeye2, Karel Fostier1, Jérôme Moreaux3,4,5, Alboukadel Kassambara3,4, Dirk Hose6, Roy Heusschen7, Helena Eriksson8, Karin Vanderkerken1, and Els Van Valckenborgh1

Abstract

Dysregulated expression of S100 protein family members is associated with cancer proliferation, invasion, angiogenesis, and inflammation. S100A9 induces myeloid-derived suppressor cell (MDSC) accumulation and activity. MDSCs, immunosuppressive cells that contribute to tumor immune escape, are the main producers of S100A9. In this study, we evaluated the role of extracellular S100A9 and the therapeutic relevance of S100A9 inhibition in multiple myeloma (MM), using the immunocompetent murine ST33MM model. We demonstrated the presence of S100A9 and its receptor TLR4 in both monocytic and granulocytic MDSCs in human and mouse samples. We showed that S100A9 acted as a chemoattractant for MM cells and induced MDSCs to express and secrete inflammatory and pro-myeloma cytokines, including TNFα, IL6, and IL10. Blocking S100A9 interactions in vivo with the small molecule ABR-238901 did not directly affect MDSC accumulation but did reduce IL6 and IL10 cytokine expression by MDSC. ABR-238901 treatment in vivo reduced angiogenesis but had only minor effects on tumor load as single agent (6% reduction). However, ABR-238901 treatment in combination with bortezomib resulted in an increased reduction in tumor load compared with single treatments (50% relative reduction compared with bortezomib alone). Our data suggest that extracellular S100A9 promotes MM and that inhibition of S100A9 may have therapeutic benefit. Cancer Immunol Res. 5(10): 839–46. ©2017 AACR.

Introduction

Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled proliferation of plasma cells. The tumor cells localize preferentially to the bone marrow (BM), where the microenvironment promotes tumor cell survival and proliferation. The MM cells modulate the BM microenvironment resulting in angiogenesis, osteolytic lesions, anemia, and immunosuppression, leading to the clinical symptoms of MM disease (1). Although immunomodulatory agents, proteasome inhibitors, and monoclonal antibodies increase survival of MM patients (1), most patients relapse. New therapeutic approaches are needed.

S100A8 and S100A9 are calcium-binding proteins and mainly secreted by granulocytes and monocytes. Although S100A8 and S100A9 can form homodimers, their inflammatory properties derive from the heterodimer (S100A8/S100A9), which is also known as calprotectin. S100A9 is involved in many biological processes including inflammation, migration, invasion, and angiogenesis (2). Increased expression of S100A9, observed in several cancer types, including colorectal cancer and breast cancer, correlates with a bad prognosis (3, 4). Intracellular S100A9 signaling activates the NADPH oxidase complex resulting in increased reactive oxygen species (ROS) production, which in turn contributes to immunosuppression (5). Extracellular S100A9 protein can initiate the inflammatory cascade by interacting with the receptor for advanced glycation endproducts (RAGE) and Toll-like receptor 4 (TLR4). Subsequently, this activates the NFκB pathway, and inflammatory cytokines (including TNFα, IL1β, IL6, and IL8) are secreted (6). In solid tumors, S100A9 recruits MDSCs to the tumor site, resulting in immune suppression, increased tumor growth, and metastasis (7).

S100A9 knockout mice with MM show less MDSC accumulation and tumor growth in the BM compared with wild-type mice, correlating MDSC accumulation with MM progression (8). However, the use in that study of highly immunogenic OVA+ MM cells might limit insight on the mechanisms by which S100A9 functions in MM development. Here, we investigated the role of extracellular S100A9 in MM using the immunocompetent ST33MM mouse, in which MM progression is characterized by...
MDSC accumulation in the BM as well as increased angiogenesis. We studied the effect of ABR-238901, a small molecule that inhibits the interaction of S100A9 with its receptors. We investigated direct and indirect effects of S100A9 on MM cells, MDSCs, and angiogenesis.

Materials and Methods

Reagents

The S100A9 inhibiting compound ABR-238901 was kindly provided by Active Biotech AB. Bortezomib was obtained from Selleckchem. Recombinant S100A9 was obtained from R&D Systems.

Microarray data of human samples

Gene expression was investigated by the use of microarray data of the Heidelberg–Montpellier (HM) cohort including newly diagnosed MM patients and healthy volunteers (9–11). Expression of S100A9, TLR4, and RAGE was analyzed by Genomicscipe (accession numbers E-MEXP-2360 and E-TABM-937). Gene expression data were normalized with the MA55 algorithm. Normal BMPCs were derived from healthy controls, and other cell populations were obtained from MM patients.

Mice

C57BL/KaLwRij mice were purchased from Harlan CPB. They were housed and maintained following the conditions approved by the Ethical Committee for Animal Experiments, Vrije Universiteit Brussel (license no. LA1230281). The 5T33MM model originated from spontaneously developed MM in elderly C57BL/KaLwRij mice and was propagated by intravenous transfer of the diseased marrow into young syngeneic mice (12). For in vivo experiments, mice were intravenously inoculated with 5 × 10⁵ 5T33MM cells.

Cell purification

Total BM was isolated from naïve and diseased 5T33MM mice followed by red blood cell lysis. Total MDSCs were positively selected by CD11b MACS beads (Miltenyi Biotec) according to the manufacturer's instructions. Granulocytic MDSCs were positively selected by Ly6G MACS beads (Miltenyi Biotec). The Ly6G− fraction was collected and further purified by the use of CD11b microbeads to obtain the monocytic MDSC population (Ly6G−CD11b+; purity > 90%). Cells were cultured in RPMI-1640 medium (Lonza) with 10% FCS (Biochrom AG) and supplements (100 U/mL penicillin/streptomycin and 2 mmol/L L-glutamine; Lonza).

Migration assay

Serum-free RPMI1640 medium (300 μL) containing recombinant S100A9 (5 μg/mL) was placed into a 24-well plate. A transwell insert (8 μmol/L pore size) was placed in each well and 5 × 10⁵ 5T33MMv cells in 200 μL serum-free medium were added into the upper chamber. After 3 hours, cells that transmigrated into lower wells were collected and a known number of SpheroTM blank calibration beads (BD Biosciences) were added to cell suspensions as internal standard. Transmigrated cells were then counted with FACScanto flow cytometer (Becton Dickinson).

Immunofluorescence staining

Cytospins were made at a concentration of 400,000 cells/mL and stored at −20°C. Cytospins were fixed in 4% paraformaldehyde and washed with Tris–NaCl 0.05% Triton-X100 (Merck). Cytospins were blocked by 2% donkey serum and incubated overnight with the primary antibody to S100A9 (#AF2065, 10 μg/mL; R&D Systems). Next, cytospins were washed and incubated for 1 hour with donkey anti-goat-FTTC (#AF488; R&D Systems). After washing, cytospins were mounted with Vectashield (Thermo Scientific) containing 4,6-diamidino-2-phenylindole (DAPI). Immunofluorescence was observed using a Nikon Eclipse 90i (Nikon France SAS).

Cell viability

Cell viability was determined by a CellTiter-Glo luminescent assay (Promega).

Western blot

Western blot was performed as described previously (13). S100A8 and S100A9 antibodies were purchased from R&D Systems. B-Actin was used as a loading control (Cell Signaling Technology). The pixel densities of proteins were quantified by ImageJ.

Flow cytometry

The following antibodies were used for murine samples: CD11b-FTTC (Biolegend), Ly6G-PECy7 (Biolegend), CD138-PE, and isotype controls. B-Actin was used as a loading control (Cell Signaling Technology). The pixel densities of proteins were quantified by ImageJ.

T-cell proliferation assay

T cells were isolated from spleen of healthy mice followed by red blood cell lysis. Cells were stained by CFSE (0.1 μmol/L; Invitrogen) and resuspended in RPMI1640 medium supplemented with 10% HEPES (Sigma) and 20 μmol/L β-mercaptoethanol (Sigma). T cells were stimulated with 2 μL of CD3/CD28 DynaBeads (Invitrogen) and cultured for 3 days in the presence or absence of isolated CD11b+ cells at different ratios. Cells were cultured in RPMI1640 medium (10% FCS) and proliferation was analyzed by flow cytometric CFSE dye dilution after CD3 staining.

ELISA

Supernatant was collected from CD11b+ cells treated with recombinant S100A9 (5 μg/mL) for 24 hours and analyzed for IL6 and IL10 secretion by ELISA according to the manufacturer's instructions (eBioscience).

PCR

RNA was extracted by the RNeasy mini kit (Qiagen) and converted into cDNA using the first-strand cDNA synthesis kit (VWR International). Expression level of mRNA was quantified by qRT-PCR using ABI 7900HT Real-Time PCR System (Applied Biosystems). Primer sequences are listed in Supplementary Table S1 (Thermo Scientific).

Microvessel density

Microvessel density (MVD) was determined by CD31 staining. A femur was fixed in zinc fixative for 48 hours, followed by decalcification for 48 hours and embedded in paraffin. Paraffin sections were blocked with normal goat serum and incubated
Figure 1.
S100A9, TLR4, and RAGE expression in multiple myeloma cells and myeloid cells. Gene expression was investigated by the use of microarray data of the Heidelberg-Montpellier (HM) cohort including newly diagnosed MM patients and healthy volunteers. S100A9 (A), TLR4 (B), and RAGE (C) expression was analyzed in bone marrow stromal cells (BMSC; n = 5), CD14+ monocytes (n = 5), CD15+ granulocytes (n = 5), CD54+ hematopoietic cells (n = 5), CD3+ T cells (n = 5), osteoclasts (n = 7), naive B cells (n = 5), bone marrow plasma cells (BMPC; n = 5), MGUS (n = 5), and primary MM cells (CD138+; n = 206). Bars represent mean ± standard deviation. D, S100A9 protein level was investigated by flow cytometry on BM samples of MM patients. MM cells (CD138+), granulocytic MDSCs (CD11b+ CD33+ CD15+), and monocytic MDSCs (CD11b+ CD14+) were costained for S100A9 and isotype controls were included. The result is representative of 5 independent experiments. E, Immunocytochemistry staining of S100A9 in 5T33MMvt cells (in vitro cell line), 5T33MM vv cells, CD11b+ Ly6G+ granulocytic MDSCs, and CD11b+ Ly6Glow monocytic MDSCs derived from 5T33MM diseased BM. One representative result of at least 3 independent experiments is shown. F, Western blot analysis of 5T33MMvt cells, 5T33MM vv cells, and CD11b+ cells derived from naive BM and 5T33MM diseased BM. S100A8 and S100A9 expression were compared between monocytic MDSCs (G-) and granulocytic MDSCs (G+). One experiment representing three is shown.
with a rat antibody to CD31 (PECAM-1, 1:10; PharMingen) overnight at 4°C. A biotin-conjugated goat anti-rat IgG was used as a secondary antibody (1:75; PharMingen). A streptavidin–horseradish peroxidase conjugate in combination with tyramide signal amplification (TSA; NEN Life Science Products) was used for detection. The number of blood vessels in the area with the highest blood vessel density was counted per 0.22 mm².

Statistical analysis
Statistical analysis was done using GraphPad Prism 5 software. Results were analyzed using the Mann–Whitney U test.
and one-way ANOVA test. $P < 0.05$ (*), $P < 0.01$ (**), and $P < 0.001$ (***). Wilcoxon–Mann–Whitney test was used to compare two independent groups. F-test one-way ANOVA was used to compare multiple groups. Details of the power analysis were included supplementary.

Results and Discussion

Expression of S100A9, TLR4, and RAGE genes was investigated in cell populations from MM patients. We studied BM hematopoietic stem cells (CD34$^+$), T lymphocytes (CD3$^+$), monocytes (CD14$^+$), polymorphonuclear neutrophils (CD15$^+$), in vitro generated osteoclasts, BM stromal cells (BMSC), BM plasma cells (BMPC), naïve B cells (CD19$^+$), and primary MM cells (MMC). RNA expression of S100A9 and its receptor TLR4 was observed in CD14$^+$ mononuclear and CD15$^+$ granulocytic myeloid cells derived from MM patients (Fig. 1A and B). RNA expression of RAGE had the lowest signal intensity (Fig. 1C). S100A9 expression was less in primary MM cells than in BMP, and MGLS (Fig. 1A). Flow cytometry staining confirmed S100A9 protein presence in CD14$^+$ and CD15$^+$ cells but not in human CD138$^+$ myeloma cells (Fig. 1D). The murine ST3MM model, as with the human disease, displays monoclonal immunoglobulin (M protein) producing MM cells localized in the BM, increased angiogenesis and increased presence (>10% increase in the ST3MM model compared with naïve mice) and immunosuppressive activity of MDSCs (14, 15). Immunostaining and Western blot analysis showed S100A9 in granulocytic (Ly6G$^+$) and monocytic (Ly6Glow) MDSCs isolated from 5T33MM-diseased mice with more S100A9 in granulocytic MDSCs than in monocytic MDSCs (Fig. 1E and F). S100A9 protein was undetectable in 5T33MM cells from in vitro cultures (ST3MMv3) or purified from the BM of diseased mice (5T33MMv3; Fig. 1E and F). Furthermore, S100A9 expression was not different between normal and MM myeloid cells. S100A8, which forms heterodimers with S100A9, had a similar expression profile (Fig. 1F). This is in concordance with a previous study in colon cancer in which S100A9 protein concentrations were similar in Gr1$^+$ cells from naïve and tumor-bearing mice (5). S100A9 protein levels in tumor cells are mostly studied in solid cancers and variable expression has been noticed in different types of tumors (3, 4). We found that MM cells do not produce S100A9 protein, and myeloid cells are the main source of S100A9 protein. S100A9 functions intracellularly (8), but can also be released extracellularly by cell damage or death, or can be actively secreted by myeloid cells at sites of inflammation (16). These data impelled us to study the role of extracellular S100A9 in MM disease.

We investigated the effect of recombinant S100A9 on migration and viability of myeloma cells in *vivo*. Recombinant S100A9 increased the migration of ST3MMv3 cells (Fig. 2A) but did not affect cell viability after incubation for 24 hours (Fig. 2B). S100A9 also induces cytokine release (6). Therefore, the effect of recombinant S100A9 on cytokine expression in ST3MMv3 cells and MDSCs was investigated by qRT-PCR. In both cell populations, S100A9 could induce expression of IL6, IL10, and TNFα, all of which promote proliferation and survival of MM cells (Fig. 2C and D). By ELISA, we confirmed the S100A9-mediated release of IL6 and IL10 by MDSCs (Fig. 2E and F). IL6 plays an essential role...
in MM pathogenesis as it is the most important growth and survival factor for myeloma cells. IL6 also interacts with adhesion molecules, oncogenes, and tumor suppressor genes (17). IL10 is a potent IL6-independent growth factor for MM cells (18). Our data are in agreement with studies where S100A9 treatment was linked to pro-inflammatory responses by activation of the NFκB and MAPK signaling pathways (6). In addition, Gao and colleagues observed S100A9-induced release of IL6 and IL8 through TLR4 interaction in human periodontal ligament cells (19).

To investigate the role of S100A9 in MM in vivo, the small molecule ABR-238901 ([a (heteroaryl)-sulfonamide derivative], which inhibits interactions between S100A9 and its receptor, was used in the ST33MM mouse model. MDSC populations express high levels of S100A9 and its receptors, so we first investigated the direct effect of ABR-238901 on MDSC accumulation and immunosuppressive activity after in vivo treatment. As MDSCs accumulate 1 week after MM cell inoculation into mice (14), ABR-238901 treatment was started at day 1 after MM cell injection and treatment was given for 5 days. Treated and untreated mice had similar percentages of CD11b+ MDSCs, monocytic (Ly6Glow) and granulocytic (Ly6Ghigh) MDSC subpopulations, and IFNγ+ CD8+ T cells (Fig. 3A–C). In addition, MDSCs from treated and untreated mice were cocultured with anti-CD3/CD28 stimulated T cells, and T-cell proliferation was measured after 3 days. Blocking S100A9 interactions in vivo did not block the T-cell–suppressive activity of MDSC; on the contrary, ABR-238901 treatment induced the suppressive activity of MDSCs (Fig. 3D). Neither viability nor apoptosis was changed in vitro when incubating the compound ABR-238901 with CD11b+ MDSCs from diseased mice (Supplementary Fig. S1). Thus, extracellular and intracellular S100A9 have different functions, as S100A9 protein–knockout mice have less MDSC accumulation and, as result, more antigen-specific CD8+ T cells in immunocompetent DP42-OVA MM models (8). Different solid tumors show that S100A9 inhibitors
reduce MDSC accumulation and induce immune responses, mainly by blocking migration of MDSCs toward the tumor. However, in MM, MDSCs are already present at the tumor in the BM and so the consequences of S100A9 inhibitors on MDSC migration may be limited.

Next, we evaluated cytokine expression in MDSCs and MM cells isolated from mice treated either with ABR-238901 or vehicle. ST33MM mice were treated with ABR-238901 for 3 weeks, and BM was isolated from mice to purify MDSCs (CD11b+ and CD11b-) and MM cells by MACS and analyze IL6 and IL10 expression by qRT-PCR. Less IL6 and IL10 was observed in MDSCs from ABR-238901 treated mice compared with vehicle-treated mice (Fig. 4A and B). In addition, we observed less IL10 expression in the MM cells, although IL6 expression was unaffected (Supplementary Fig S2). These results indicate that S100A9 expression by myeloid cells leads to the secretion of proinflammatory cytokines (e.g., IL6 and IL10) in MDSCs and tumor cells and therefore contributes to a favorable microenvironment for MM cell growth.

In MM, limited success is achieved with single-agent therapy. From large randomized trials in MM patients, we know that combination therapy produces longer progression-free survival than does single therapy both in newly diagnosed and relapsed patients (20). Thus, we evaluated the combination of the clinically used anti-MM agent bortezomib together with ABR-238901 in the ST33MM model. ABR-238901 in combination with bortezomib resulted in reduced tumor load compared with treatments of either agent alone (Fig. 4C). As with human MM, angiogenesis, which supports MM cell growth and survival, is induced in the ST33MM model (21). Granulocytic MDSC, here described as the main producers of S100A9, also exert a proangiogenic role in MM (22). Therefore, to investigate whether S100A9 is involved in angiogenesis, mice were treated with ABR-238901 for 3 weeks and analyzed for BM microvessel density using CD31 immunostainings. Less angiogenesis was observed in ST33MM mice treated with ABR-238901 compared with ST33MM mice treated with vehicle (Fig. 4D). Low concentrations of S100A8/A9 promote neovascularization by the increase in proliferation, migration, and tube formation of human umbilical vascular endothelial cells and S100A8/S100A9 proteins thus serve as proangiogenic factors causing increased blood supply and subsequently tumor progression (23). The S100A9-receptor interaction is also inhibited by quinoline-3-carboxamide analogs including tasquinimod and paquinimod. Tasquinimod, administered orally in a phase III clinical trial in metastatic castration-resistant prostate cancer,– decreased blood supply and subsequently tumor progression in xenograft MM models. S100A9KO mice treated with tasquinimod did not show improved survival compared with vehicle group, indicating that the antitumor effect was mediated by selective targeting of S100A9 and not by a direct antitumor effect (25).

We conclude that S100A9, mainly produced by myeloid cells in the BM, is involved in the pathogenesis of MM. S100A9 attracted MM cells to the BM where it provided a survival niche by inducing the growth factors IL6 and IL10, as well as promoting angiogenesis. We found that a combination therapy that used bortezomib along with an agent to block S100A9 interactions reduced tumor load in vivo. Such a combination may have therapeutic relevance in the treatment of MM patients.

Disclosure of Potential Conflicts of Interest
H. Eriksson is Head of BioScience at Active Biotech AB and has ownership interest in Active Biotech AB. No potential conflicts of interest were disclosed by the authors.

Authors’ Contributions
Conception and design: K. De Veirman, D. Hose, K. Vanderkerken, E. Van Valckenborgh
Development of methodology: K. De Veirman, N. De Beule, H. De Raee
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K. De Veirman, N. De Beule, H. De Raee, K. Fostier, J. Moreaux, D. Hose, R. Heusschen, E. Van Valckenborgh
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K. De Veirman, N. De Beule, H. De Raee, A. Kassambura, D. Hose, R. Heusschen, E. Van Valckenborgh
Writing, review, and/or revision of the manuscript: K. De Veirman, N. De Beule, K. Maes, E. Menu, E. De Bruyne, K. Fostier, J. Moreaux, D. Hose, H. Eriksson, K. Vanderkerken, E. Van Valckenborgh
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K. De Veirman, N. De Beule
Study supervision: K. Vanderkerken, E. Van Valckenborgh

Acknowledgments
The authors would like to thank Carine Seynave and Sofie Seghers for excellent technical assistance.

Grant Support
This work was supported by the SRP-VIB, Universitaire Stichting Van Belgii, and Wetenschappelijk Fonds Wille Getty of the UZ Brussels and in part by the German Federal Ministry of Education (‘CLIO4MICS’ [01ZX1309] and ‘CAMPSIMM’ [01ES1103]) and the Deutsche Forschungsgemeinschaft (SFB/TR79, subprojects B12, B1 and M9). Nathan De Beule is a PhD student and Kim De Veirman, Elke De Bruyne, and Ken Maes are postdoctoral fellows of FWO-VI.

Received April 13, 2017; revised July 12, 2017; accepted August 30, 2017; published OnlineFirst September 13, 2017.

References

SecretionMyeloma Survival by Stimulating Angiogenesis and Cytokine Secretion

Kim De Veirman, Nathan De Beule, Ken Maes, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-17-0192

Supplementary Material
Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2017/09/13/2326-6066.CIR-17-0192.DC1

Cited articles
This article cites 25 articles, 10 of which you can access for free at:
http://cancerimmunolres.aacrjournals.org/content/5/10/839.full#ref-list-1

Citing articles
This article has been cited by 2 HighWire-hosted articles. Access the articles at:
http://cancerimmunolres.aacrjournals.org/content/5/10/839.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerimmunolres.aacrjournals.org/content/5/10/839
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.