Tumor- and Neoantigen- Reactive T-cell Receptors Can Be Identified Based on Their Frequency in Fresh Tumor
Anna Pasetto, Alena Gros, Paul F. Robbins, Drew C. Deniger, Todd D. Prickett, Rodrigo Matus-Nicodemos, Daniel C. Douek, Bryan Howie, Harlan Robbins, Maria R. Parkhurst, Jared Gartner, Katarzyna Trebska-McGowan, Jessica S. Crystal, and Steven A. Rosenberg
Effective adoptive T-cell therapy requires multiple tumor-epitope reactive T-cell clones. Fresh TILs were found to frequently contain such cells. Their TCRs were rapidly isolated based only on their frequency and could be used for personalized TCR-gene therapy. See related Spotlight, p. 719.

Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma
Sebastian Theurich, Sacha I. Rothschild, Michael Hoffmann, Mario Fabri, Andrea Sommer, Maria Garcia-Marquez, Martin Thelen, Catherine Schill, Ramona Merki, Thomas Schmid, Dieter Koeberle, Alfred Zipfel, Christian Bues, Cornelia Mauch, Christian Tigges, Alexander Kreuter, Ian Borggrefe, Michael von Bergwelt-Baildon, and Max Schlaak
Too few patients benefit from immune checkpoint inhibition alone. However, patients with melanoma receiving systemic anti-CTLA-4 plus localized treatments had significantly prolonged overall survival. In a multivariate analysis, adding local treatment was an independent factor for improved survival.

Analyses of Pretherapy Peripheral Immunoscore and Response to Vaccine Therapy
Benedetto Farsaci, Renee N. Donahue, Italia Grenga, Lauren M. LePone, Peter S. Kim, Brendan Dempsey, Janet C. Siebert, Nuhad K. Ibrahim, Ravi A. Madan, Christopher R. Heery, James L. Gulley, and Jeffrey Schlom
Refined subsets of peripheral blood immune cells were assessed prior to therapy in two clinical trials. The resultant “peripheral immunoscors,” compiled through methodology potentially generalizable to other trials, were correlated with clinical benefit in patients receiving vaccine therapy.
Table of Contents

766 Gp96-Ig/Costimulator (OX40L, ICOSL, or 4-1BBL) Combination Vaccine Improves T-cell Priming and Enhances Immunity, Memory, and Tumor Elimination

George Fromm, Suresh de Silva, Louise Giffin, Xin Xu, Jason Rose, and Taylor H. Schreiber

Local anticancer therapies can increase antitumor efficacy while reducing toxicities. Cellular vaccines that locally secreted costimulation ligands produced stronger, more specific T-cell activation and tumor rejection with lower ligand concentrations than did vaccines combined with systemic antibody agonists.

779 Myeloma Drug Resistance Induced by Binding of Myeloma B7-H1 (PD-L1) to PD-1

Mariko Ishibashi, Hideto Tamura, Mika Sunakawa, Asaka Kondo-Onodera, Namiko Okuyama, Yasuko Hamada, Keiichi Moriya, Inhak Choi, Koji Tamada, and Koiti Inokuchi

B7-H1 suppresses T cells by binding to PD-1, but it is unclear how binding to B7-H1 on cancer cells affects tumors. “Reverse signaling” of B7-H1 on myeloma cells was found to induce drug resistance through the Akt-signaling pathway.

789 Mutation Drivers of Immunological Responses to Cancer

Eduard Porta-Pardo and Adam Godzik

Tumor mutations create neoantigens that increase their immunogenicity but also enable new avenues of immune escape. DomainXplorer analyzes distributions of mutations in cancer genomes searching for correlations with immune response that are not seen by gene level methods.

799 Molecular Programming of Tumor-Infiltrating CD8+ T Cells and IL15 Resistance

Tumor-infiltrating CD8+ T cells were profoundly resistant to IL15 complexes, so could not induce tumor regression. Their gene-expression signature was compared with that of productive cytotoxic responses and known differentiation states to determine how to restore antitumor function and cytokine responsiveness.

ABOUT THE COVER

Intensive research into the intertwined relationship of the immune system with tumors is yielding new therapies that rely on managing a patient’s immune system to promote long-term tumor destruction. Melanoma is the poster child for immunotherapies, with many clinical trials first tested in patients with this tumor. The Rosenberg lab has been treating patients with improved versions of the patient’s own cells that recognize and kill melanoma cells. Their latest study identifies T-cell receptors (TCRs) that recognize a patient’s tumor antigens based on the frequency of TCR usage among the T cells present in the patient’s tumors. The original micrograph (right) depicts a melanin-filled antigen-presenting cell (brown) surrounded by T cells, in the midst of a melanoma tumor. Read more in the article by Pasetto et al., starting on page 734 of this issue. The micrograph (right) is from the Steven Rosenberg laboratory. Artwork is by Lewis Long.