Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells

Stephanie Zdanov1, Magis Mandapathil2, Rasha Abu Eid1,3, Saudat Adamson-Fadeyi1, Willie Wilson4, Jiahua Qian1, Andrea Carnie1, Nadya Tarasova5, Mikayel Mkrtichyan1,3, Jay A. Berzofsky6, Theresa L. Whiteside2, and Samir N. Khleif1,3

Abstract

Constitutive activation of the KRAS oncogene in human malignancies is associated with aggressive tumor growth and poor prognosis. Similar to other oncogenes, KRAS acts in a cell-intrinsic manner to affect tumor growth or survival. However, we describe here a different, cell-extrinsic mechanism through which mutant KRAS contributes to tumor development. Tumor cells carrying mutated KRAS induced highly suppressive T cells, and silencing KRAS reversed this effect. Overexpression of the mutant KRAS gene in wild-type KRAS tumor cells led to regulatory T-cell (Treg) induction. We also demonstrate that mutant KRAS induces the secretion of IL10 and transforming growth factor-β1 (both required for Treg induction) by tumor cells through the activation of the MEK–ERK–AP1 pathway. Finally, we report that inhibition of KRAS reduces the infiltration of Tregs in KRAS-driven lung tumorigenesis even before tumor formation. This cell-extrinsic mechanism allows tumor cells harboring a mutant KRAS oncogene to escape immune recognition. Thus, an oncogene can promote tumor progression independent of its transforming activity by increasing the number and function of Tregs. This has a significant clinical potential, in which targeting KRAS and its downstream signaling pathways could be used as powerful immune modulators in cancer immunotherapy.

Cancer Immunol Res; 4(4); 354-65. ©2016 AACR.

Introduction

Oncogenes act through cell-intrinsic mechanisms to promote tumor cell growth and survival. RAS proteins control signaling pathways important for cell survival and are the most common oncogenes in human cancers (1). Single amino acid mutations place RAS in a constitutively active state promoting tumor growth, angiogenesis, and metastasis (2). Mutations in KRAS are found in various human cancers and are associated with poor prognosis (3, 4). Although peptides derived from mutated KRAS are presented on the surface of tumor cells in the context of MHC and recognizable as tumor-associated antigens, tumors carrying a KRAS mutation fail to be eliminated by the immune system (5, 6). This failure could be attributed to the immunosuppressive tumor microenvironment (TME), in particular, the suppressive regulatory T cells (Treg), which play a role in promoting tumor progression (7–9).

Cancer cells overexpress immunosuppressive factors such as IL10 and transforming growth factor beta-1 (TGFβ1), both of which inhibit effector T-cell activity and stimulate Treg development (10–12). It has been suggested that Tregs are required for KRAS-mediated lung tumorigenesis (13). However, whether KRAS is involved in the induction of Treg has not been determined.

We investigated whether oncogenic KRAS could enhance the induction of Tregs. We found that, in comparison with tumor cells with wild-type KRAS, tumor cells carrying mutated KRAS induce suppressive Tregs by enhancing the secretion of IL10 and TGFβ1. Conversely, the inhibition of KRAS reduced the infiltration of Tregs into sites of KRAS-driven tumorigenesis. Here, we identify a cell-extrinsic mechanism by which tumors carrying a KRAS mutation induce Tregs. This negative regulation of adaptive immunity through the induction of functional Tregs, combined with the well-known cell-intrinsic effects of mutant KRAS, leads to the promotion of tumorigenesis.

Materials and Methods

Cell lines, culture conditions, and inhibitors
Human cell lines established from primary tumors were purchased from ATCC. SW620 and SW480 are mutated KRAS colon
cancer cell lines harboring a G12V mutation. Colo320 and WiDr are wild-type KRAS colon cancer cell lines. Cells were cultured in RPMI-1640 with 10% FCS, 100 IU/mL penicillin, 100 μg/mL streptomycin, and 2 mmol/L L-glutamine. Cell lines were routinely tested and confirmed Mycoplasma negative (Hoechst stain, PCR, and standard culture tests). Cells were used within 6 months of purchase (between 2011 and 2012).

PD98059 and curcumin (Sigma-Aldrich) were dissolved in DMSO at 10 mmol/L and used at 20 μmol/L.

KRAS (Synthetic Biologics and Drug Discovery Facility, NCI-Frederick) is a potent KRAS inhibitor and a lipopeptide that mimics the C-terminal alpha-helix of KRAS and binds directly to KRAS. It inhibits cancer cells with GI50 in nanomolar ranges.

In vitro simulation culture assay (IVA) of TME

Peripheral blood mononuclear cells (PBMC) from normal donors were processed for Treg generation as described (14). Briefly, PBMC were isolated by centrifugation over Ficoll-Hypaque gradients (GE Healthcare Bioscience) and separated into CD4+ lymphocytes and cell supernatants were harvested for phenotypic, functional, and cytokine analyses. To some cocultures, neutralizing IL10 mAb (clone 9016) from R&D Systems; and anti-CD3–phycoerythrin (PE), anti-IL10-PE (clone 127107), and anti-TGF-β-PE (clone 9016) was added on days 0, 3, and 6. On day 9, culture was carried out on a 7500 FAST Real-Time PCR System (Applied Biosystems). Relative quantification of target gene mRNA expression was calculated using the comparative Ct method. Expression levels of target genes were normalized to an endogenous control (Gapdh housekeeping gene). Gene-specific PCR primers used were: human KRAS; TGGTTGCTGTA (forward) and ACTGGCATCTGGTAGGCACTCAAT (reverse), human IL10; GGCCGTGTCTCATGATTCTT (forward) and TGAGGCTATTAAAG GCAATCTCTCA (reverse), human TGFβ1; ACAATTCTCGGACACTGATG (forward) and TCAGCATGTATCATCCCTTCGTC (reverse), human GAPDH; ACCACCTCTCACTTCCTTGA (forward) and GTCCACACCC-TTGTGCCTGA (reverse).

Establishment of Colo320 cells stably expressing KRASG12V mutation

Colo320 cells were stably transfected with plasmids encoding empty vector (pBabe-puro, Addgene) or KRASG12V (pBabe-puro) using the Amaxa system (Lonza). Cells were screened with puromycin (1 μg/mL; Merck) for 7 days. Survival clones were pooled and cultured in RPMI containing 1 μg/mL puromycin.

Suppression assay

CD4+ CD25+ T cells were stained with 1.5 μmol/L CFSE (Life Technologies/Invitrogen) and cocultured with Tregs as described (14). Briefly, CD4+ CD25+ T cells were stimulated with plate-bound CD3 mAb (2 μg/mL) and soluble CD28 mAb (2 μg/mL; Millenyi Biotec) in complete AIM-V medium containing IL2 (150 IU/mL) in 96-well plates (1 × 10⁵). Tregs obtained from the in vitro TME cultures were harvested, phenotyped (for expression of FOXP3, CTLA-4, CD122, IL10, and TGFβ1), counted, and added to CD4+ CD25+ T cells at 1:2 or 1:1. T-cell numbers ensured the proper CD4+ CD25+: Treg. Cocultures were incubated for 5 days at 37°C. CFSE dilution was analyzed using ModFit-LT software (Verity Software House), to assess T-cell proliferation and calculate the percent proliferation inhibition relative to proliferation of responder cells alone.

siRNA knockdown of endogenous KRAS, IL10, or TGFβ1

KRAS, IL10, or TGFβ1 was silenced using a pool of four siRNAs (SMARTpool siRNA; Dharmacon) containing targeting sequences against genes of interest.

Real-time RT-PCR

Total RNA was extracted from cells using the RNaseasy Mini Spin Kit (Qiagen). Quantitative RT-PCR was performed using the Express One-Step SYBR GreenER System (Invitrogen), and was carried out on a 7500 FAST Real-Time PCR System (Applied Biosystems). Relative quantification of target gene mRNA expression was calculated with the comparative Ct method. Expression levels of target genes were normalized to an endogenous control (GAPDH housekeeping gene). Gene-specific PCR primers used were: human KRAS; TGGTTGCTGTA (forward) and ACTGGCATCTGGTAGGCACTCAAT (reverse), human IL10; GGCCGTGTCTCATGATTCTT (forward) and TGAGGCTATTAAAG GCAATCTCTCA (reverse), human TGFβ1; ACAATTCTCGGACACTGATG (forward) and TCAGCATGTATCATCCCTTCGTC (reverse), human GAPDH; ACCACCTCTCACTTCCTTGA (forward) and GTCCACACCC-TTGTGCCTGA (reverse).

www.aacrjournals.org Cancer Immunol Res; 4(4) April 2016 355

Downloaded from cancerimmunolres.aacrjournals.org on May 7, 2021. © 2016 American Association for Cancer Research.
TAM67 transient transfection
TAM67 was a gift from Dr. M.J. Birrer (Massachusetts General Hospital, Harvard Medical School, Boston, MA). SW620 cells were transiently transfected using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s recommendations.

Western blot immunoassay
mAb used: mouse anti-KRAS (1:1,000; Novus Biologicals), rabbit anti-c-Jun (1:1,000; Santa Cruz Biotechnology), rabbit anti-phospho ERK (1:1,000), rabbit anti-ERK (1:2,000), rabbit anti-CAPDH (1:5,000), rabbit anti-α-tubulin (1:5,000), and Horseradish peroxidase-linked secondary antibodies (1:10,000; Cell Signaling Technology). Bands were visualized by chemiluminescence using X-ray film.

ELISA
Tumor cells (10^6) were seeded in 6 well plates with 2 mL complete RPMI medium. Two days later, the culture medium was collected and dead cells removed by centrifugation. IL10 and TGFβ1 concentrations in the supernatants were assayed with a sandwich ELISA Kit (R&D Systems) according to the manufacturer’s instructions.

Tumor cells (10^6) were seeded in 6 well plates with 2 mL complete RPMI medium. Two days later, the culture medium was collected and dead cells removed by centrifugation. IL10 and TGFβ1 concentrations in the supernatants were assayed with a sandwich ELISA Kit (R&D Systems) according to the manufacturer’s instructions.

Mouse treatment
A/J mice (The Jackson Laboratory) were housed according to the guidelines of the Animal Care and Use Committee of the NIH. Mice (6 weeks old) were treated with three weekly doses of the tobacco-specific carcinogen 4-methylimidazole-1-(3-pyridyl)-1-butanone NNK (EagleFiacher Pharmaceuticals Lenexa). NNK was prepared in 0.9% NaCl solution and delivered by intraperitoneal (i.p.) injection at 100 mg/kg. KRAS inhibitor KRA4 was injected i.v. (twice a week for 3 weeks) or i.p. (five times a week for 3 weeks) at 12.5 mg/kg. At 9 weeks of age, and prior to tumor formation, mice were euthanized by cervical dislocation and lungs were collected.

Detection of lung-infiltrated Tregs
Murine lung tissues were collected 1 week after the last NNK injection and dissociated using mechanical and enzymatic (Collagenase Type 1, Invitrogen) methods, as described (15). Lung-infiltrating CD4^+ Foxp3^+ cells were analyzed using flow cytometry and the following anti-mouse mAbs (eBiosciences): anti-CD3-PE-Cy7 (clone 145-2C11), anti-CD4-FITC (clone RM 4-5), and anti-Foxp3-Alexa700 (clone FJK-16s).

Results
Mutant KRAS tumor cells convert CD4^+ CD25^+ T cells into Tregs
Although mutant KRAS produces recognizable tumor antigens, these cells escape immune surveillance. This could be attributed to a suppressive microenvironment, to which Tregs are major contributors. We therefore tested whether mutant KRAS can induce functional Tregs.

We used an in vitro culture assay (IVA) that simulated the human TME (14). Briefly, CD4^+ CD25^+ T cells were cocultured with autologous IDC and iirradiated tumor cells in the presence of IL2, IL10, and IL15. Four colon cancer cell lines were assessed that expressed either wild-type (WT; Colo320, Widr) or mutant (SW620, SW480) KRAS. Lymphocytes were phenotyped and functionally evaluated after 10 days. We found that, in the presence of mutant KRAS tumor cells, a high percentage of CD4^+CD25^+ T cells were converted to Tregs as characterized by expression of FOXP3, CTLA-4, and CD122 (Fig. 1A and B). In contrast, cocultures established with WT KRAS tumor cells contained significantly fewer Tregs (Fig. 1A and B).

To determine whether Tregs generated in the presence of mutant KRAS were functional, we evaluated their ability to suppress proliferation of activated T cells. T cells from the in vitro TME were co-cultivated with CFSE-labeled autologous CD4^+CD25^+ responder cells stimulated with CD3 and CD28 mAbs. Cocultures were set up at the Treg: CD4^+CD25^+ ratio of 1:2 or 1:1. Tregs generated in cocultures with mutated KRAS mediated stronger suppression than those generated with WT KRAS (Fig. 1C and D). As Tregs may exert their suppressive function through secretion of IL10 and TGFβ1 (16, 17), we examined the secretion of these cytokines in the supernatants. We found that T cells isolated from cocultures containing mutant KRAS secreted significantly more IL10 and TGFβ1 than those from culture containing WT KRAS (Fig. 1E). This finding was further confirmed by intracellular staining (Fig. 1F and G).

Taken together, these data show that tumor cells with KRAS mutations can significantly enhance the induction and function of Tregs when compared with tumor cells with WT KRAS.

Mutated KRAS in tumors directly responsible for Treg induction
We have shown that tumor cells carrying mutated KRAS could convert a higher percentage of CD4^+CD25^+ T cells to Tregs when compared with WT KRAS. To investigate whether constitutive activation of KRAS was the direct cause of conversion to Tregs, we used siRNA to knock down KRAS.

Endogenous KRAS protein levels were efficiently and specifically reduced with KRAS-specific siRNA pool (Fig. 2A). We found that disruption of KRAS abrogates the ability to convert CD4^+CD25^+ T cells into Tregs. Indeed, knockdown of KRAS resulted in a significantly decreased number of FOXP3^+ CTLA-4^+, and CD122^+ T cells (Fig. 2B). However, silencing KRAS in WT KRAS tumor cells had no effect on T-cell conversion (Fig. 2B). We also observed that T cells generated in cocultures containing silenced KRAS meditated significantly lower suppression, similar to those generated in the presence of WT KRAS (Fig. 2C). To further analyze the effect of silencing KRAS on Treg function, intracellular staining for the
suppressive cytokines IL10 and TGFβ1 was performed. As expected, silencing KRAS in WT KRAS tumor cells did not affect the percentage of IL10- and TGFβ1-expressing cells (Fig. 2D). However, silencing KRAS in tumor cells with mutant KRAS significantly reduced the number of Tregs that express IL10 and TGFβ1 (Fig. 2D). These findings confirm that constitutive activation of KRAS in cancer cells was responsible for the induction of suppressive Tregs.

To further verify the role of KRAS in mediating Treg conversion, WT KRAS tumor cells were stably transfected with cDNA encoding KRASG12V mutation or with an empty vector (pBABE-puro; Supplementary Fig. S1A). T cells cocultured with tumor cells transfected with KRASG12V contained significantly more FOXP3+, CTLA-4+, and CD122+ cells (Fig. 3A and Supplementary Fig. S1B). Moreover, functional assay of T lymphocytes cocultured with KRASG12V-transfected Colo320 cells had more suppressor activity (Fig. 3B). This result was correlated with an increase in intracellular IL10 and TGFβ1 (Fig. 3C and Supplementary Fig. S1B).

Treg induction by mutant KRAS mediated through IL10 and TGFβ1

We have shown that tumor cells with mutant KRAS induce a higher percentage of highly functional Tregs in comparison with WT KRAS.

To delineate the exact mechanism by which constitutive activation of KRAS induces highly functional Tregs, we investigated whether the induction requires direct cell–cell interaction. Transwell inserts separating SW620 cells from CD4+CD25– T cells were used. We observed that the percentage of FOXP3+ cells (Fig. 4A), as well as the suppressive activity and cytokine levels (Fig. 4B), were unaffected by the presence of Transwell inserts. This observation indicated that direct contact between tumor cells and CD4+CD25+ T cells was not required for Treg generation. These findings also suggested that mutated KRAS tumor cells may negatively modulate immune responses by secreting factors that promote Treg induction.

IL10 and TGFβ1 are secreted by many tumors and play a role in Treg induction (10, 18). We therefore investigated their effects by...
testing whether their neutralization in the in vitro TME culture could inhibit the ability to induce Tregs. Neutralization of IL10 or TGFβ1 resulted in a significant reduction in FOXP3+ T cells (Fig. 4C) and mediated significantly less suppression (Fig. 4D). Not surprisingly, intracellular expression of IL10 and TGFβ1 was significantly reduced in the presence of neutralizing antibodies (Fig. 4E).

We next investigated whether IL10 and TGFβ1 are secreted by tumor cells carrying mutated KRAS. We analyzed supernatants of WT or mutated KRAS tumor cells and found that cells expressing mutated KRAS secreted more IL10 and TGFβ1 (Fig. 4F).

To further test whether the secretion of IL10 and TGFβ1 was directly responsible for Treg induction, we performed the in vitro TME culture with mutated KRAS tumor cells treated with IL10, TGFβ1, or control siRNA. We observed that silencing endogenous IL10 or TGFβ1 (Fig. 5A) resulted in a significant decrease in the conversion of CD4+CD25+ T cells to Tregs (Fig. 5B) and resulted in a significant reduction in FOXP3+ T-cell generation (B), the suppressive ability (C), and the percentage of cells expressing intracellular IL10 and TGFβ1 (D). Data represent means ± SD from three independent experiments; *, P < 0.05; **, P < 0.005 (compared with untransfected cells; Student t test).
Figure 3.
Overexpression of mutant KRAS^{12V} in wild-type KRAS tumor cells induced Treg conversion. A, the percentage of FOXP³⁺ T lymphocytes; B, the suppressive ability; and C, the percentage of cells expressing intracellular IL10 and TGF-β in T cells generated with WT KRAS tumor cells overexpressing mutant KRAS^{12V} plasmid (KRAS Pd) were significantly higher than WT cells. Data represent means ± SD from three independent experiments; *, P < 0.05; **, P < 0.005 (compared with untransfected Colo320 cells; Student t test).

Mutant KRAS led to induction of IL10 and TGF-β1
To examine whether mutated KRAS directly causes the increase of IL10 and TGF-β1 secretion, we disrupted KRAS signaling (KRAS siRNA) in tumor cells carrying mutated or WT KRAS and evaluated the effects on IL10 and TGF-β1. The mRNA expression of these cytokines was attenuated by 50% in SW620, whereas knockdown of KRAS in Colo320 had no significant effect (Fig. 6A). These findings were confirmed at the protein level (Fig. 6B).

We also found that overexpression of mutant KRAS in tumor cells harboring WT KRAS resulted in an increase of IL10 and TGF-β1 mRNA (Fig. 6C). Taken together, these data indicated that constitutive KRAS activation drove the secretion of IL10 and TGF-β1.

MEK–ERK–AP1 pathway mediated IL10 and TGF-β1 increase
We have shown that tumors with mutated KRAS induced the development of highly suppressive Tregs, and that this induction was mediated through the production of IL10 and TGF-β1.

We next addressed the mechanisms through which mutant KRAS enhances the expression of these cytokines. Oncogenic KRAS leads to the activation of the MEK–ERK pathway; we therefore confirmed that this pathway was activated in mutated KRAS cells. Indeed, silencing KRAS resulted in decreased activation of ERK as determined by less phospho-ERK (Fig. 7A).

We next examined the effect of the MEK inhibitor PD98059 on KRAS-induced IL10 and TGF-β1 production. Incubation of SW620 with PD98059 was associated with a significant decrease in IL10 and TGF-β1 mRNA and secreted protein (Fig. 7B and C), suggesting that MEK was critical for their expression.

Given that ERK can modulate gene expression by activating several transcription factors, such as AP-1, and that the human promoters of IL10 and TGF-β1 contain several binding sites for AP-1 (19–21), we hypothesized that AP-1 could be involved in KRAS-induced transcription of IL10 and TGF-β1. To explore this possibility, we incubated SW620 cells with curcumin, an AP-1 inhibitor (22). The addition of curcumin significantly reduced IL10 and TGF-β1 production (Fig. 7D and E), suggesting that AP-1 may play a role in their upregulation. Additional confirmation was obtained using a dominant negative mutant of c-Jun (component of AP-1), TAM67. This mutant specifically inhibits AP-1 activity (23). Expression of TAM67 protein was determined 24 hours after transient transfection of SW620 cells (Fig. 7F). Expression of IL10 and TGF-β1 was downregulated by TAM67 (Fig. 7G and H).

Together, these data demonstrate that oncogenic KRAS induced the expression of IL10 and TGF-β1 through activation of the MEK–ERK–AP1 pathway.

KRAS inhibition prevented Treg infiltration in lung tumorigenesis model
Activating mutations in KRAS have been identified in approximately 25% of human lung adenocarcinomas primarily associated with smoking (24). In preclinical models, KRAS mutations are present in over 90% of lung tumors induced by the tobacco-specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK; refs.25, 26). Exposure of A/J mice to NNK increases specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK; refs.25, 26). Exposure of A/J mice to NNK increases the number of lung-associated Tregs before tumors develop (13).

To assess whether NNK-induced lung Treg infiltration directly correlated with NNK-induced KRAS mutation, A/J mice were treated with NNK, with or without treatment with the KRAS inhibitor kr4A4. One week after the last NNK dose, mice were euthanized and their lungs were analyzed to assess lung-infiltrating Tregs. The analysis was carried out before tumors formed, so that tumor size did not affect the number of detected Tregs. This specific model was used to avoid the disadvantage of other tumor models, in which the number of tumor-infiltrating cells could be misinterpreted based on the variability of tumor size. This model also avoids confounding Treg homing to the tumor and intratumoral conversion, because Treg assessment is made prior to tumor formation; hence, no Treg homing can be detected at this stage.

Administration of NNK markedly increased the number of Treg in lung tissues (Fig. 7I). Treatment of NNK-treated mice with
kR4A4 partially reversed the induction of lung-associated Tregs (Fig. 7I). Thus, we have demonstrated tumor KRAS–dependent modulation of Treg infiltration in lung cancer precursor lesions.

Discussion

Constitutive activation of KRAS in human malignancies is associated with aggressive tumor growth and poor prognosis (3, 4). Similar to other oncogenes, KRAS acts in a cell-intrinsic manner to affect tumor growth by affecting apoptosis, angiogenesis, and tumor invasiveness (2). Tumor cells carrying mutated KRAS upregulate cell-cycle regulatory and antiapoptotic genes (27, 28), and mutated KRAS proteins stimulate vascular endothelial growth factor and matrix metalloprotease production, promoting angiogenesis and metastasis (29, 30). However, a cell-extrinsic role of mutated KRAS in modulating the tumor microenvironment, in particular the immune response, has not yet been identified.

Despite the fact that mutated KRAS is a tumor-associated antigen (5), tumor cells carrying the mutated KRAS evade immune recognition. Indeed, although immunization of advanced cancer patients with mutant KRAS peptide vaccines generates specific immune responses, seldom have any clinical responses to these vaccines been demonstrated (6, 31, 32). Silencing mutated KRAS in

Figure 4.

Treg conversion by mutated KRAS did not require direct cell–cell contact, and neutralization of IL10 and TGFβ1 prevented Treg induction. A and B, T cells generated from cocultures with mutated KRAS (SW620) in the presence or absence of Transwell inserts did not show any differences in the percentage of FOXP3+ T lymphocytes (A) and the suppressive activity (B). C–E, T cells generated from cocultures with mutated KRAS tumor cells in the presence of neutralizing mAbs to IL10 or TGFβ1 had a significantly lower percentage of FOXP3+ T lymphocytes (C), suppressive activity (D), and intracellular expression (E) of IL10 and TGFβ1. F, secretion of IL10 and TGFβ1 in the supernatant of mutated KRAS tumor cells (SW620) was significantly higher than that in wild-type (Colo320). Data represent means ± SD from three independent experiments; *, P < 0.05; **, P < 0.005 (compared with untreated cells; Student t test).
colorectal cancer cells reduces the formation of subcutaneous tumors in immune-competent mice, but not in immune-deficient mice (33). Although these findings suggest that mutated KRAS may contribute to initiation and maintenance of tumor growth by evasion from the immune system, the role of mutated KRAS in this process has not been defined.

A growing body of evidence suggests the presence of interplay between oncogenic mutations and antitumor immunity. Oncogenic BRAF\(^{V600E}\) promotes immune evasion by promoting internalization of MHC class I from melanoma cell surface (34), suppressing expression of melanocyte differentiation antigens (35), suppressing dendritic cell function (36), and enhancing the production of immune-suppressive cytokines (37, 38). Inhibition of BRAF\(^{V600E}\) reverses all these effects, rendering melanoma cells more recognizable by T cells (35, 36, 38).

In this work, we investigated whether the presence of mutated KRAS in tumors suppresses the immune system as a mechanism to escape immune recognition. We found that tumor cells expressing mutated KRAS generated suppressive Tregs and that silencing KRAS significantly reduced this ability. We also found that, although tumor cells with WT KRAS induced an insignificant number of Tregs, mutant KRAS\(^{G12V}\) gene transfection into these cells significantly enhanced their ability to induce suppressive Tregs.

We also show that mutant KRAS drove the secretion of IL10 and TGF\(_{\beta}\) by tumor cells, which are responsible—at least in part—for Treg induction (10, 18). When the secretion of these immunosuppressive cytokines was inhibited, Treg generation was significantly reduced. Silencing KRAS resulted in a significant reduction in the production of these cytokines. On the other hand, the introduction of the mutant KRAS\(^{G12V}\) gene into tumor cells with WT KRAS significantly enhanced their ability to produce IL10 and TGF\(_{\beta}\), thus confirming the role of KRAS in the production of these cytokines.
Our data also demonstrate an important role for the MEK–ERK–AP-1 signaling pathway in mutant KRAS-driven secretion of IL10 and TGFβ1. Inhibition of MEK and AP-1 in tumor cells with mutated KRAS resulted in a significant reduction in the production of IL10 and TGFβ1. Our findings align with those from a recent report that showed that MEK inhibition mitigates TGFβ production in tumor cells, hence reducing their ability to induce Tregs (39).

The role of KRAS in the induction of Tregs can be utilized to mitigate tumor-infiltrating Tregs. Here, we report that KRAS inhibition reduced the number of Tregs induced by the tobacco carcinogen NNK in lung tissues even prior to tumor development. Combined inhibition of MEK and Akt (both downstream of KRAS) resulted in an enhanced antitumor therapeutic efficacy greater than that of either single treatment (40). This results from induction of apoptosis and proliferation inhibition in tumor cells by these inhibitors (40). This is not surprising, as in tumors harboring mutant KRAS, MEK inhibition enhances Akt phosphorylation, thus enhancing cell proliferation (41). This is thought to be due to the interaction between the MEK–ERK and PI3K–Akt pathways (42, 43). In fact, mutations in both these pathways are common in many cancers (44). Therefore, targeting both pathways results in an enhanced antitumor efficacy (40, 45). This has significant clinical implications, especially due to the role of the PI3K–Akt pathway in modulating the immune response in the tumor microenvironment. We previously reported that Akt inhibition results in a selective inhibition of Tregs, which translates into significant antitumor therapeutic efficacy (46). Our group and others have also shown that Akt inhibition enhances the effector arm of the immune response by enhancing the memory CD8 population and diminishing terminal differentiation of cytotoxic CD8 T cells. This translates into an enhanced antitumor immune response (47, 48).

Taken together, our findings demonstrate that oncogenic KRAS in cancer cells negatively regulates T-cell immunity by inducing Tregs. We identified here a tumor cell–extrinsic role for oncogenic signaling pathways within tumor cells that ultimately promoted immunologic tolerance in the microenvironment through the expansion of the suppressive compartment.
We believe that our findings have important implications for therapeutic interventions in patients with mutated KRAS tumors. Indeed, oncogenic mutations of KRAS have emerged as a common mechanism of resistance against EGFR-directed tumor therapy (49, 50). As tumor-mediated immune suppression represents a major obstacle to the stimulation of antitumor T-cell responses necessary for clinical effects, targeting IL10 and TGFβ1 might thus represent an attractive strategy to augment efficacy of antitumor immune therapies. Inhibition of the MEK–ERK–AP-1 signaling pathway may also provide a route to blocking tumor immune evasion, as well as tumor proliferation and survival. These findings also suggest the utility of combining the inhibition of the MEK–ERK–AP-1 pathway with other immune modulators to further enhance the antitumor immune response.

In conclusion, herein we describe a cell-extrinsic mechanism through which mutated KRAS inhibits antitumor immune responses and augments its own cell-intrinsic oncogenic potential. These findings have significant clinical implications for immune modulation of tumors with KRAS mutations.

Disclosure of Potential Conflicts of Interest

M. Mkrtichyan is a scientist at FivePrime Therapeutic. No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: S. Zdanov, M. Mandapathil, J.A. Berzofsky, W. Wilson, J. Qian, S.N. Khleif

Development of methodology: S. Zdanov, M. Mandapathil, S. Adamson-Fadeyi, W. Wilson, J. Qian, N. Tarasova, S.N. Khleif

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. M. Mandapathil, S. Adamson-Fadeyi, W. Wilson, M. Mkrtichyan, T. L. Whiteside

Figure 7.

Mutated KRAS tumor cells upregulate IL10 and TGFβ1 expression through activation of the MEK–ERK–AP-1 pathway. A, silencing KRAS in SW620 resulted in a significant reduction in the phosphorylation of ERK. B and C, MEK inhibitor (PD98059) significantly reduced IL10 and TGFβ1 mRNA (B) and secreted protein (C). D and E, AP-1 inhibitor (curcumin) significantly reduced IL10 and TGFβ1 mRNA (D) and secreted protein (E). F, expression of TAM67 in SW620 after transfection with Lipofectamine 2000. G and H, TAM67 significantly reduced IL10 and TGFβ1 mRNA (G) and secreted protein (H). I, inhibition of KRAS prevented Treg infiltration in a tobacco carcinogen-driven lung tumorigenesis model. Three weekly doses of NNK were administered into AJ mice, and Treg lung infiltration was assessed 1 week after the completion of NNK treatment (prior to tumor development). NNK markedly increased the number of Tregs in lung tissues. Treatment with the KRAS inhibitor kRA4A partially reversed the induction of Treg by NNK. Data represent means ± SD from three independent experiments; *, P < 0.05; **, P < 0.005.
References

Grant Support
This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research (S.N. Khleif).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 23, 2015, revised December 18, 2015, accepted January 9, 2016, published OnlineFirst February 15, 2016.

354 Cancer Immunol Res; 4(4) April 2016 Cancer Immunology Research

Zdanov et al.

Cancer Immunology Research

Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells
Stephanie Zdanov, Magis Mandapathil, Rasha Abu Eid, et al.

Updated version
Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-15-0241

Supplementary Material
Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2016/02/12/2326-6066.CIR-15-0241.DC1

Cited articles
This article cites 49 articles, 22 of which you can access for free at:
http://cancerimmunolres.aacrjournals.org/content/4/4/354.full#ref-list-1

Citing articles
This article has been cited by 9 HighWire-hosted articles. Access the articles at:
http://cancerimmunolres.aacrjournals.org/content/4/4/354.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerimmunolres.aacrjournals.org/content/4/4/354. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.