
activated with IL-2 or vehicle control. Treatment with IFN
blunted the effect of panobinostat as the levels of intracellular
phosphoproteins were slightly less than those seen in vehicle
control using the same concentration of panobinostat. Pano-
binostat treatment of CD8 and CD4 cells from the bone
marrow of a patient with multiple myeloma (BM-1) increased
pSTAT1, pSTAT5, pSTAT6, pP38, pP53, and CyD3 in vehicle
control cells, whereas it induced a 6-fold increase in pH3. In
these cells, treatmentwith IFNor IL-2 blunted this effect. These
trends for each patient sample were consistent for CD20 cells
(Fig. 5 and data not shown). These data indicate that pano-
binostat activates the MAPK and PI3K/AKT signaling in
human lymphocytes, especially those from patients with mel-
anoma and myeloma.

Discussion
In this in vitro study, themajority of the human lymphocytes

were highly susceptible to treatment with panobinostat at 20
nmol/L or less, which were doses lower than that required to
inhibit the melanoma cell lines. Most lymphocytes, resting
or proliferating, are susceptible to panobinostat inhibition
whether they were derived from the peripheral blood or the

bone marrow, from healthy subjects, or patients with mela-
noma or multiple myeloma. Only a minority of the 12 mela-
noma cell lines tested were sensitive to panobinostat. Growth
inhibition of lymphocytes was mediated primarily via
increased apoptosis demonstrated by cleaved PARP and in
the sub-G0 population. Increased DNA damage was induced in
some lymphocyte cultures. Panobinostat upregulated MAPK
and PI3K/AKT phosphoproteins by 4- to 8-fold compared with
controls. This induction was even more pronounced in human
lymphocytes from patients with myeloma or melanoma com-
pared with a healthy donor.

This is the first report evaluating the inhibitory effect of
panobinostat in a large panel of melanoma cell lines, which
included several BRAF-mutant and wild-type melanoma cell
lines inherently resistant to vemurafenib. These data are
consistent with prior reports demonstrating that HDACis
generally have only a modest inhibitory effect in solid tumors
compared with hematologic malignancies (7, 38, 39). The
melanoma cell lines tested in our study were derived from
cutaneous melanoma, and not from uveal melanoma. A report
had suggested that uveal melanoma cell lines may be more
sensitive to panobinostat, with an IC50 of 60 nmol/L or lower

Figure 3. Panobinostat induces DNA damage in melanoma cell lines and human lymphocytes. A, M229 and M370, PBMCs from a healthy donor (HD-1), from
patients with metastatic melanoma (MD1, -2, -3, and -4), or from a healthy donor followed by genetic modification to express the TCR for melanoma
antigen MART-1 (T-HD1) were treated with 0 to 10 mmol/L LBH589 for 24 hours, stained for pH2Ax, and analyzed by flow cytometry. Shading, fold change with
respect to the vehicle control (dark gray, decreased; black, no change; light gray, increased). Numbers, magnitude of the fold change (negative,
decreased; positive, increased relative to controls). B, quantitative analysis of DNA damage. n ¼ 3; bars, SEM. Increasing concentrations from left to right side.
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(40). This growth inhibition may be mediated, at least in part,
by the suppression of the expression of microphthalmia-asso-
ciated transcription factor (MITF) as the treatment with
panobinostat resulted in a decrease in MITF-M proteins
(41). Therefore, additional studies to evaluate the clinical
applicability of panobinostat in uveal melanoma may be
worthwhile.
The multicolor flow cytometry used in this study for single-

cell phospho-proteomic analysis provides a powerful tool to
gain insight into the effects of panobinostat on signaling
networks within individual PBMC subpopulations (42). In
addition to qualitative analysis, the phospho-flow technique
affords a highly reproducible, quantitative evaluation of
the changes in intracellular phosphoproteins at the level of
individual lymphocytes (33, 43). In contrast with treatment
with vemurafenib, which resulted in little change in phospho-
proteins or lymphocyte function at concentrations below
50 mmol/L (33), panobinostat upregulated proteins in key
signaling pathways in all cells tested. Therefore, we hypo-
thesize that panobinostat exerts its toxic effect on lymphocytes
by upregulating signaling molecules that lead to decreased
function and increased cytotoxicity.
In mouse models of melanoma, HDACi increased the

expression of proteins involved in antigen presentation and
processing (44). Despite promising mouse data demonstrat-
ing synergy of HDACi with anti-CD40 and anti-CD137 (23) or
in combination with ACT therapy (24, 25), our data with
panobinostat in human lymphocytes should temper enthu-
siasm for combining HDACi with immunotherapy, given the
cytotoxic effect of panobinostat on lymphocytes at concen-
trations lower than that required to inhibit most melanoma
cell lines. Consistent with this, panobinostat had a detrimen-

tal effect on human DC viability and function (31). Panobino-
stat also decreased the expression of T-cell–activating costi-
mulatory receptor CD40, DC- and T-cell–activating receptor
CD83 (23), and antigen-presenting molecules HLA-A/B/C
(31). Our data in human lymphocytes are not surprising,
given that pan-HDAC inhibitors have clinical application in
the treatment of T-cell malignancies and are under active
investigation in early-phase clinical trials for the treatment of
other hematologic malignancies, such as multiple myeloma,
Hodgkin lymphoma, and chronic myelogenous leukemia, and
as immunomodulatory agents in inflammatory disorders
such as rheumatoid arthritis. Because of the deleterious
effects of panobinostat on human lymphocytes, we conclude
that it is likely not a suitable adjunctive therapy after ACT.
Instead, one potential application could be as an adjunct for
lymphodepletion before ACT or as a useful immunosuppres-
sive agent, though additional investigations into this potential
clinical application should be undertaken. Alternatively, the
development of panobinostat as a local therapy via intratu-
moral injections or delivered via nanoparticles to minimize
systemic toxicity may also be a consideration.

One strategy to augment responses to immunotherapy is
combination therapy with agents that increase antigen pre-
sentation to T cells. HDACis have been reported to increase
melanosomal antigen expression and improve combinatorial
effect with immunotherapy in mouse models. However, expo-
sure to a pan-HDACi resulted in both cytostatic and cyto-
toxic effects on human lymphocytes in vitro as it altered key
lymphocyte signaling networks. These human in vitro data
may support an argument against the use of panobinostat, a
hydroxamic acid HDACi, in combination with immunothera-
pies in the clinic for patients with melanoma.
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