










increased protein expression of T-cell lineage transcription
factors such as T-bet, RORgt, and Eomes, compared with
HeliosHIGH Tregs (Fig. 3A). Expression in HeliosLOW Tregs was
also higher than in Tregs in the IgG control groups at multiple
time points (day 7 for T-bet, days 7–14 for Eomes, days 10 and
14 for RORgt; Fig. 3A).

To determine whether increased T-bet, RORgt, and Eomes
protein levels in Tregs has biologic consequence, we con-
ducted a cytokine recall assay on cells isolated from tumors
10 days after DTA-1 treatment. Foxp3-GFP mice were used
for this experiment because the staining for Foxp3 and
Helios is diminished and unreliable after PMA/ionomycin
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Figure 2. DTA-1–modulated Tregs show reduced Helios expression and a prosurvival phenotype. A, representative FACS plots show the percentage of
HeliosLOW Tregs (live, CD45þ, CD3þ, CD4þ Foxp3þ) in pooled spleens and individual tumors of DTA-1- and IgG–treated mice 11 days after tumor challenge.
B, example FACS histograms (top) show Helios expression of IgG- (gray filled) and DTA-1–treated (black line) tumor-infiltrating Tregs on indicated day
after tumor challenge. Bottom histograms show comparison of BCL-2 expression in HeliosHIGH (dashed line) with HeliosLOW (solid black line) DTA-1–treated
Tregs. Mean � SEM for the percentage of HeliosLOW Tregs in IgG- and DTA-1–treated tumors, mean fluorescence intensity (MFI) of BCL-2 and BCLXL
for IgG Tregs, compared with HeliosLOW DTA-1 Tregs at each time point is shown in the graphs. C, representative Foxp3 and CD25 expression of IgG
Tregs (gray filed) versus DTA-1–treated HeliosHIGH (dashed line) and HeliosLOW (black solid line) Tregs, 7 days after tumor challenge. D, example FACS
plots show Foxp3 and GITR (DTA-1-PE-Cy7) staining of CD4 T cells in IgG tumors (day 10 post tumor challenge) compared with DTA-1–treated
tumors on days 7, 10, and 14 posttumor challenge. Experiments were repeated three times with 4 to 5 per group, with one representative experiment shown.
�, P < 0.01; ��, P < 0.001; ���, P < 0.0001. TC, tumor challenge.
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stimulation (Supplementary Fig. S2B). Using Foxp3-GFP
mice also allowed us to circumvent this technical hurdle
as low levels of Foxp3 expression correlate with loss of

Helios (Fig. 2C), allowing us to subset our analysis to
Foxp3-GFPLOW and Foxp3-GFPHIGH Tregs. GFPLOW Tregs
(HeliosLOW) in DTA-1–treated mice showed a more than
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Figure 3. DTA-1–treated Tregs display a Teff-like profile. A, Helios expression compared with T-bet, RORgt, and Eomes in Tregs (CD45þ, CD3þ, CD4þ) from
DTA-1–treated tumors is shown in representative plots. Graphs show the mean� SEM for mean fluorescence intensity (MFI) of these markers for IgG Tregs,
compared with DTA-1–modulated HeliosLOW Tregs at each time point. B, IFN-g recalls expression in GFP high (gray shaded) compared with GFP low Tregs
(black line) from day 10 IgG- and DTA-1–treated tumors. Graph shows themean� SEM IFN-g expression in IgG Tregs, compared with GFP lowDTA-1 Tregs.
C and D, Tregs and Teffs were sorted from individual mice as described in Materials and Methods from indicated tissue and time points for gene expression
analysis. Graphs compare the level of IL-10, IFN-g (C), Foxp3, and Helios (D) expression in IgG- compared with DTA-1–treated tumors. Splenic Tregs and
tumor Teffs are provided as controls. Experimentswere repeated three timeswith 4 to 5per group (A andB) and two timeswith 10per group (CandD),with one
representative experiment shown. �, P < 0.01; ��, P < 0.001; ���, P < 0.0001. TC, tumor challenge; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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2-fold increase in IFN-g production compared with control
IgG-treated Tregs (Fig. 3B). Although there was no differ-
ence in the IFN-g expression between GFPHIGH and GFPLOW

cells in IgG control tumors (Fig. 3B, top), IFN-g expression
was restricted to GFPLOW in DTA-1–treated Tregs (Fig. 3B,
bottom). Despite increased RORgt expression in HeliosLOW

Tregs, we did not detect any significant difference between
IgG and DTA-1–treated Tregs in its related cytokine IL-17
(data not shown). To confirm this result and more closely
measure the changes in Treg lineage phenotype, we sorted
Foxp3-GFP Tregs from individual tumors and measured
the expression of relevant Tregs and Teff genes. Using this
approach, we found a maximum of 4-fold upregulation in
IFN-g expression (day 7) and approximately 2-fold decrease
in IL-10 expression (day 10) in DTA-1–treated Tregs (Fig.
3C). Other markers, such as GITR, IL-2, IL-17, TNF-a, TGF-b,
and SATB1, were expressed to equivalent levels in DTA-1–
treated and IgG-treated Tregs (data not shown). Although
Helios protein levels after DTA-1 treatment correlated with
reduced Helios gene expression, there was no major differ-
ence in Foxp3 gene expression (Fig. 3D). This would indicate
that GITR signaling may cause a posttranscription modifi-
cation that leads to reduced Foxp3 protein expression.
Regardless of the mechanism responsible for the loss of
Foxp3 and Helios expression, these results suggest that
DTA-1 induces Treg lineage instability and acquisition of
a Teff-like profile.

DTA-1–induced lineage instability removes Treg-
suppressive function from the tumor
To determine whether the phenotypic changes described

above alter Treg-suppressive function in vivo, we used an ex
vivo collagen-fibrin gel matrix culture to measure CD8þ cyto-
lytic T-cell (CTL) effector function against tumor cells from
control IgG- or DTA-1–treated mice (20). Collagen-fibrin gels
mimic a three-dimensional tissue-like environment and are
more sensitive than packed cell-pellet assays at measuring
CD8þ CTL effector function (20). Furthermore, we have found
that collagen-fibrin gel cultures of explanted B16 or B16-
expressing OVA (B16-OVA) tumors, which include all infiltrat-
ing cells, are resistant to killing by a 10- to 50-fold excess of
in vitro cognate antigen-activated CD8þ CTL, recapitulating
the suppression that exists in vivo (Fig. 4A; and Budhu and
Schaer; unpublished data).
Consistent with prior results, control IgG-treated tumors

become resistant to killing by in vitro activated CTLs and
proliferate in the collagen gels after 24 hours, with the number
of tumor cells increasing overtime (Fig. 4A; Budhu and Schaer;
unpublished data). In contrast, DTA-1 treatment caused
tumors to remain susceptible to ex vivo killing by activated
CTLs, and the number of viable tumor cells continued to
decrease at 48 and 72 hours (2-fold and 3-fold, respectively,
vs. 0 hour; Fig. 4A). Calculation of the killing efficiency, k (as
described in Materials and Methods and in ref. 20) highlights
the differences between DTA-1– and control IgG-treated
tumors. Killing efficiency of CTLs in DTA-1–treated tumors
increases over 2-fold at 48 hours (5.3� 10�10 at 24 hours to 1.3
� 10�9 at 48 hours; Fig. 4A) in contrast with that in IgG-treated

mice, which maintains suppression. Ex vivo addition of DTA-1
had no effect on the killing of DTA-1–treated tumors, control
IgG-treated tumors, or cultured B16 cells, and GITR�/� CTL
killed tumor cells from DTA-1–treated tumors and cultured
B16 cells at the same rate asGITRþ/þCTL (Fig. 4B, dashed lines
and green lines vs. red lines). This suggests that killing is
independent of GITR stimulation by DTA-1 on CTL (Fig.
4B). Combined, our data support the conclusion that GITR
modulation of Tregs by DTA-1 removes their suppressive
influence in the tumor microenvironment.

Discussion
The overarching goal of cancer immunotherapy has been

the activation of tumor-specific immunity that is able to
overcome the hurdles established by tumors to evade immune
destruction. GITR activation seems to reach an important
balance by enhancing tumor immunity while inhibiting
immune suppression in a tumor-dependent manner. The
research presented here shows that in addition to its estab-
lished role in modulating Teffs, DTA-1 treatment causes Tregs
to lose lineage stability, reducing their suppressive influence
over the tumor microenvironment.

Our data suggest that conditions present in tumor-bearing
mice and the tumor microenvironment are responsible for
making Tregs susceptible to GITR-induced Foxp3 loss.
Reduced IL-2 levels have been shown to be important for Treg
stability and homeostasis (33, 34). However, we do not believe
that the lack of IL-2 accounts for Treg instability in our system
because transferred Tregs lose Foxp3 in the periphery even
after transfer into lymphoreplete hosts. In addition, equal
numbers of cotransferred tumor-experienced and na€�ve
Tregs are recovered from DTA-1–treated animals, despite the
loss of Foxp3 expression in tumor-experienced Tregs. This
suggests that DTA-1 does not simply deplete Foxp3þ Tregs
(Fig. 1D and Supplementary Fig. S1B). Only upon tumor
infiltration in DTA-1–treated animals do na€�ve donor Tregs
manifest significant Foxp3 loss, highlighting further the role of
tumor conditioning on Tregs and even at steady state. There-
fore, although the detailed mechanism of GITR signaling-
induced Foxp3 loss requires further investigation, it is evident
that tumor preconditioning and the tumor microenvironment
play amajor role in permitting GITR-dependentmodulation of
Foxp3 expression.

The reduction of CD25 expression and the production of
IFN-g observed in intratumor Tregs during DTA-1 therapy
(Figs. 2 and 3) are similar to what has been reported when
Foxp3 is deleted inmature Tregs (35). There has been evidence
suggesting that inflammatory environments cause Tregs to
lose stability and convert to a Teff-like phenotype (29); how-
ever, recent research has brought these findings into question.
Results from Miyao and colleagues and Zhou and colleagues
suggest that the conversion of Tregs into Teffs is actually due to
a transient expression of Foxp3 in non-Tregs (36, 37). It is
unlikely that the DTA-1–induced Treg lineage conversion we
observe here is an artifact of lineagemarking. The Treg transfer
and gene expression analysis experiments (Figs. 1 and 3) rely on
sorting an entire Foxp3-GFP–positive Treg population and do
not use a lineage marking Cre recombinase system. In fact, we
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were unable to use Foxp3-Cre mice due to the "leaky" lineage
marking seen during backcrossing to the C57BL/6 background
(data not shown). Thus, we believe the results presented here
illustrate that DTA-1–mediated GITR stimulation causes
tumor-specific reprogramming of Tregs into a Teff-like phe-
notype. As we were unable to isolate or phenotype repolarized
Foxp3� Tregs using the Foxp3-Cre lineage marking mice, it
remains to be established whether the conversion of Tregs to
a Teff-like profile is necessary or secondary to the loss of
Foxp3/suppressive function. Development of complex genetic
models would be needed to answer this question and deter-

mine whether former DTA-1–modulated Tregs work to poten-
tiate antitumor immunity after losing suppressive capacity.

How DTA-1–induced GITR signaling leads to Foxp3 degra-
dation is an important question. Expression levels of Foxp3
mRNA were comparable between control IgG- and DTA-1–
treated mice, but there is a marked reduction in Foxp3 protein
levels (Figs. 3B and 2C). This would suggest that downstream
signaling fromGITR imposes posttranscriptional or posttrans-
lational control of Foxp3 protein expression. Although down-
stream signaling from GITR induced by GITR-L was recently
shown to alter Treg-suppressive function through the
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Figure 4. Treg lineage instability removes intratumor immune suppression. A and B, experiment schematic: tumors were isolated and dissociated, and
10,000 live tumor cells were then embedded along with all tumor-infiltrating cells (�3–5 times tumor cell counts) in collagen-fibrin gel together with or without
CTLs as described in Materials and Methods. After 24, 48, and 72 hours, gels were lysed and viable cells were cultured in a colony-forming assay. No
killing would appear with 100þ colonies, and killing would show very few colonies. A, graphs show number of viable tumor cells recovered at indicated time
points for IgG (left) and DTA-1 (middle) for total tumors alone (blue line) or with activatedOT-1 T cells (red line). Right, rate of B16 cell killing byOT-1CTL (killing
constant k, as calculated inMateriala andMethods), of IgG (dark gray) andDTA-1 (white) tumors is showncomparedwith primary tissue cultureB16cells alone
(light gray). B, viable tumor cells recovered from cultures of IgG- and DTA-1–treated total tumors alone (blue), with GITRþ/þ Pmel-1 (red), and GITR�/� Pmel-1
(green). Dashed lines indicate cultures that included the ex vivo addition of 10 mg/mL of DTA-1; solid ones indicate control cultures. Experiments were
repeated three times with tumors pooled from 3 to 5 mice for each experiment. Mean and � SEM of three experiments is shown in A; a representative
experiment is shown in B. �, P < 0.01.
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activation of c-jun-NH2-kinase (JNK), it is unclear whether
DTA-1 causes a similar effect (38). JNK activation after long-
term GITR-L stimulus resulted in reduced Foxp3 mRNA
expression to a level that we did not observe with DTA-1
treatment. GITR and TNFR family members use TNFR-asso-
ciated factor (TRAF) proteins to transmit downstream signals
(8, 39). Because many TRAF proteins function as E3 ubiquitin
ligases, one hypothesis could be that overstimulation of GITR
by DTA-1 could cause an intersection of this cascade with
Foxp3 protein and targeting it for degradation. Because intra-
tumor Tregs express less Foxp3 mRNA than peripheral Tregs
(Fig. 3B), this may make them uniquely sensitive to GITR-
induced degradation of Foxp3.
A propensity to modulate pTregs over tTregs would be a

logical assumption considering their unstable nature (29).
However, in the case of B16 melanoma, it seems that the
majority of intratumor Tregs have a tTreg-like phenotype, as
has been seen in 4T1 tumors, and without a minor pTreg
population as seen in other tumors (25). In fact, transfer
experiments into Rag�/� mice established that a majority of
Tregs can be rendered susceptible to GITR-induced loss of
Foxp3. We found a similar result, with 75% to 80% of Tregs
modulated in the tumor microenvironment during DTA-1
therapy in wild-type mice (% of intratumor Treg Foxp3 loss
þ % Foxp3þHeliosLOW Tregs; Supplementary Fig. S2A and
S2B). This suggests that the effects of DTA-1 are not limited
to a minor subset of Tregs, such as pTregs. Regardless, DTA-1
treatment caused Tregs to lose Helios protein and gene
expression, corresponding with increased levels of inflamma-
tory T-cell transcription factors, T-bet, RORgt, and Eomes.
Treg expression of T-bet or RORgt is not unprecedented, and
the expression of these transcription factors is important for
the Treg-suppressive function (29). Surprisingly, Eomes, tra-
ditionally thought of as a CD8þ CTL transcription factor, is
highly upregulated in the DTA-1–treated Tregs. We have
reported recently that simulation of the closely related TNFR
family member OX40 has the ability to induce Eomes in CD4
Teffs (40). Even though there has been evidence that Tregs
could control immunity through granzyme-dependent killing
of B cells, to date no role for Eomes in Treg function has been
described (41). The significance of Eomes expression in DTA-1
modulation of Tregs will require further investigation; how-
ever, it exemplifies the level to which overstimulation of
GITR on susceptible Tregs can alter their lineage program
The end result of Treg lineage instability caused by GITR

immunotherapy is the removal of intratumor suppression
mediated by Tregs, as shown by the collagen-fibrin gel killing
assay (Fig. 4). Using the same approach, we recently deter-
mined that intratumor immune suppression in B16 tumors
is Treg dependent, as specific in vivo depletion of Tregs
restores killing of explanted tumors (Budhu and Schaer;
unpublished data). Whether or not the DTA-1 effect is due
to reduced intratumor Treg numbers, Treg lineage instabil-
ity, or a combination of both remains to be determined.
Interestingly, even though GITR treatment removes Treg
suppression and DTA-1–treated tumors are regressing
in vivo, tumor cells cocultured with total infiltrates continue
to grow ex vivo (Fig. 4). We interpret the need for additional

input of Teffs to continue killing as evidence that for optimal
in vivo therapy, GITR's ability to enhance CD8þ T-cell numbers
and persistence also plays an important role (42). Consequent-
ly, targeting Tregs seems to be a major mechanism for DTA-1
treatment along with its intrinsic effects on CD8þ T cells. This
conclusion is in agreement with our prior results showing that
both Tregs and Teffs must express GITR for the optimal effects
of DTA-1 (17).

Development of new immunotherapies that accelerate
antitumor immunity is important, as checkpoint blockade
does not benefit all patients (2, 3). Our data show that ligation
of GITR can accomplish both goals. By inducing Treg lineage
instability, DTA-1 releases an important source of suppres-
sion of tumor immunity. At the same time, we and others have
shown that GITR ligation by DTA-1 accelerates antitumor
immunity to take advantage of the now permissive tumor
microenvironment (12, 17). The unique ability of GITR ligation
to target both axes, modulating Tregs primarily in the tumor
microenvironment, supports the continued clinical develop-
ment of GITR agonist agents. Accordingly, in collaborations
with GITR Inc., we are currently investigating the agonist anti-
human GITR antibody, TRX-518, in a phase I first-in-human
trial (GITR Inc., Clinical trials.gov: NCT01239134). We believe
that the knowledge gained from our study in understanding
GITR mechanism of action will help facilitate the develop-
ment of appropriate biomarkers and inform rational design
of future clinical trials.
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