Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Immunology Research
Cancer Immunology Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Tackling the Tumor Microenvironment: Beyond T-cells

Abstract A106: Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy

Mohamed Labib Salem, Mohamed Attia, Said Abdou, Abdel-Aziz A. Zidan and Mona F. Zidan
Mohamed Labib Salem
Tanta University, Tanta, Egypt.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohamed Attia
Tanta University, Tanta, Egypt.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Said Abdou
Tanta University, Tanta, Egypt.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Abdel-Aziz A. Zidan
Tanta University, Tanta, Egypt.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mona F. Zidan
Tanta University, Tanta, Egypt.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A106 Published February 2019
  • Article
  • Info & Metrics
Loading
Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY

Abstract

Background: Acute lymphocytic leukemia (ALL) is biologically and clinically considered as a heterogeneous neoplasm of lymphoid progenitor cells in the bone marrow (BM). 15- 20 % of children with ALL who achieve an initial remission, will show relapse. One potential mechanism behind this relapse could be the emergence of cancer stem cells (CSCs), which are considered the driving force of tumorigenesis due to their ability of self-renewal as well as the emergence of immune regulatory cells including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Treg). Aim: The main aim of this study was to analyze the numbers of CSCs and correlate these numbers with the numbers of blasT-cells, MDSCs and Treg cells in children with B-ALL before and after induction of chemotherapy. Materials and Methods: CSCs were defined as CD45dimCD19+CD10+CD34+CD38-, MDSCs were defined as Lin-HLA-DR-CD33+CD11b+ and Treg cells were defined as CD4+CD25+CD127-. The frequencies of these cells were analyzed in the peripheral blood of B-ALL patients before (n= 10) and after (n= 10) induction of chemotherapy using flow cytometry. Results: Significant increases in the numbers of CSCs were shown in B-ALL patients after induction of chemotherapy as compared to newly diagnosed patients (7.6± 8.3 vs. 2.7± 2.4, P<0.05). The numbers of CSCs in ALL patents before and after induction of chemotherapy inversely correlated with the numbers of the blasT-cells. Additionally, the numbers of MDSCs and Treg cells were higher and lower, respectively, in patients after induction of chemotherapy as compared to before chemotherapy. Conclusion: Our results indicate that chemotherapy of B-ALL patients results in emergence of high numbers of CSCs and MDSCs, which might be contributing, respectively, to tumor relapse and creation of systemic immune suppression. This pilot study opens a new avenue to investigate the mechanism mediating the emergence of these cells on larger population of B-ALL patients at different treatment stages.

Citation Format: Mohamed Labib Salem, Mohamed Attia, Said Abdou, Abdel-Aziz A. Zidan, Mona F. Zidan. Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A106.

  • ©2019 American Association for Cancer Research.
Previous
Back to top
Cancer Immunology Research: 7 (2 Supplement)
February 2019
Volume 7, Issue 2 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Immunology Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract A106: Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy
(Your Name) has forwarded a page to you from Cancer Immunology Research
(Your Name) thought you would be interested in this article in Cancer Immunology Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract A106: Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy
Mohamed Labib Salem, Mohamed Attia, Said Abdou, Abdel-Aziz A. Zidan and Mona F. Zidan
Cancer Immunol Res February 1 2019 (7) (2 Supplement) A106; DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract A106: Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy
Mohamed Labib Salem, Mohamed Attia, Said Abdou, Abdel-Aziz A. Zidan and Mona F. Zidan
Cancer Immunol Res February 1 2019 (7) (2 Supplement) A106; DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A106
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Tackling the Tumor Microenvironment: Beyond T-cells

  • Abstract A089: The effect of lactate dehydrogenase-A (LDH-A) knockdown and human prostate-specific membrane antigen (hPSMA) directed CAR T-cell treatment on hPSMA(+) Myc-CaP tumors
  • Abstract IA07: Using matrix protein affinity to modulate the tumor microenvironment
Show more Tackling the Tumor Microenvironment: Beyond T-cells

Tackling the Tumor Microenvironment: Beyond T-cells: Poster Presentations - Proffered Abstracts

  • Abstract A089: The effect of lactate dehydrogenase-A (LDH-A) knockdown and human prostate-specific membrane antigen (hPSMA) directed CAR T-cell treatment on hPSMA(+) Myc-CaP tumors
  • Abstract IA07: Using matrix protein affinity to modulate the tumor microenvironment
  • Abstract A106: Higher numbers of cancer stem cells in the peripheral blood of children with B-ALL after chemotherapy
Show more Tackling the Tumor Microenvironment: Beyond T-cells: Poster Presentations - Proffered Abstracts
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Cancer Immunology Essentials

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Immunology Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Immunology Research
eISSN: 2326-6074
ISSN: 2326-6066

Advertisement