Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Immunology Research
Cancer Immunology Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Clinical Trials of Cancer Immunotherapies

Abstract A005: A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers

Ana B. Blazquez, Alex Rubinsteyn, Julia Kodysh, John P. Finnigan, Thomas Marron, Rachel L. Sabado, Marcia Meseck, Timothy J. O'Donnell, Jeffrey Hammerbacher, Michael Donovan, John Holt, Milind Mahajan, John Mandeli, Krysztof Misiukiewicz, Eric M. Genden, Brett A. Milles, Hooman Khorasani, Peter R. Dottino, Hanna Irie, Amy B. Tiersten, Elisa R. Port, Andrea S. Wolf, Hern J. Cho, Ashutosh Tewari, Samir S. Parekh, Sujit Nair, Matthew D. Galsky, William K. Oh, Sacha Gnjatic, Eric E. Schadt, Phillip A. Friedlander and Nina Bhardwaj
Ana B. Blazquez
Icahn School of Medicine at Mount Sinai, New York, NY; Genentech, San Francisco, CA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alex Rubinsteyn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Kodysh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John P. Finnigan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Marron
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rachel L. Sabado
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcia Meseck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy J. O'Donnell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey Hammerbacher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Donovan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Holt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Milind Mahajan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Mandeli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Krysztof Misiukiewicz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric M. Genden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brett A. Milles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hooman Khorasani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter R. Dottino
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hanna Irie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amy B. Tiersten
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elisa R. Port
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrea S. Wolf
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hern J. Cho
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ashutosh Tewari
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samir S. Parekh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sujit Nair
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew D. Galsky
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William K. Oh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sacha Gnjatic
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric E. Schadt
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Phillip A. Friedlander
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nina Bhardwaj
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A005 Published February 2019
  • Article
  • Info & Metrics
Loading
Abstracts: Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; September 30 - October 3, 2018; New York, NY

Abstract

Introduction: Mutation-derived tumor antigens (MTAs) arise as a direct result of somatic variations, including nucleotide substitutions, insertions, and deletions that occur during carcinogenesis. These somatic variations can be characterized via genetic sequencing and used to identify MTAs. We developed a platform for a fully-personalized MTA-based vaccine in the adjuvant treatment of solid and hematologic malignanicies. Methods: This is a single-arm, open label, proof-of-concept phase I study designed to test the safety and immunogenicity of Personalized Genomic Vaccine 001 (PGV001) that targets up to 10 predicted personal tumor neoantigens. The single-center study will enroll 20 eligible subjects with histologic diagnosis of solid and hematologic malignancies. Subjects must have no measurable disease at time of first vaccine administration, and 5-year disease recurrence risk of > 30%. Toxicity will be defined by CTCAE v5.0. Blood samples will be collected at various time points for immune response monitoring. Each patient’s vaccine peptides are selected by identifying somatic mutations from comparison of tumor and normal exome sequencing data, phasing somatic variants with co-occurring germline variants using tumor RNA sequencing data, and ranking mutated peptide sequences ”Openvax pipeline.” The process for determining somatic variants hews closely to the Broad Institute’s “Best Practices” for cancer SNVs and indels. The phasing of somatic and germline variants is implemented in a custom bioinformatics tool called Isovar. Mutated protein sequences containing phased variants are ranked according to two criteria: expression of the mutant allele in tumor RNA and aggregated predicted affinity to the patient’s Class I MHCs. Both quantities are normalized and multiplied together to create single ranked ordering of the candidate mutant sequences. Results: PGV001_002 (head and neck squamous cell cancer), who has completed vaccination, received 10 doses of vaccine comprising 10 long peptides (25 amino acid length) combined with poly-ICLC (toll-like receptor-3 agonist) intradermally. Vaccine-induced blood T-cell responses were determined, at weeks 0 (before-treatment) and 27 (after-treatment), ex vivo by interferon (IFN)-g enzyme-linked immunospot (ELISPOT) assay and after in vitro expansion by intracellular cytokine staining (ICS). Overlapping 15-16-mer assays peptides (OLPs) spanning the entirety of each ILP and 9-10-mer peptides corresponding to each predicted class I epitope (Min) were pooled and used to monitor immunogenicity. Ex vivo responses to these peptide pools were undetectable at week 0 but were evident at week 27 against 2 OLPs out of 10 (20%) and in 5 Min out of 10 (50%). After in vitro expansion, neoantigen-specific CD4+ and CD8+ T-cell responses were found in 5 out of 10 pooled peptides (50%). 7 out of 10 (70%) epitopes elicited polyfunctional T-cell responses (secretion of INF-α, TNF-α, and/or IL-2) from either CD4+ or CD8+ T-cells. Conclusion: To identify which predicted epitopes within the peptides pools stimulated the T-cell responses, we deconvoluted all the pools by either ex vivo and in vitro expansion. Ex vivo IFN-α production was detected in 1 (15-mer) peptide out of 15 (6.7%) and in 4 (9-10-mer) peptides out of 22 (18.2%). After expansion with single peptides, of 22 (9-10-mer) peptides tested, CD8+ T-cells were reactive against 13 peptides (59%), while CD4+ responses were seen in response to 11 of 15 (15-16-mer) peptides tested. Both CD4+ and CD8+ T-cell responses were polyfunctional. The PGV001 vaccine in our first patient showed both safety and immunogenicity, eliciting both CD4+ and CD8+ responses to the vaccine peptides. As we are enrolling additional patients, the information learned from this clinical trial will instruct the next generation of MTA-based vaccines, future development of immunotherapeutic approaches and rational combinations.

Citation Format: Ana B. Blazquez, Alex Rubinsteyn, Julia Kodysh, John P. Finnigan, Thomas Marron, Rachel L. Sabado, Marcia Meseck, Timothy J. O'Donnell, Jeffrey Hammerbacher, Michael Donovan, John Holt, Milind Mahajan, John Mandeli, Krysztof Misiukiewicz, Eric M. Genden, Brett A. Milles, Hooman Khorasani, Peter R. Dottino, Hanna Irie, Amy B. Tiersten, Elisa R. Port, Andrea S. Wolf, Hern J. Cho, Ashutosh Tewari, Samir S. Parekh, Sujit Nair, Matthew D. Galsky, William K. Oh, Sacha Gnjatic, Eric E. Schadt, Phillip A. Friedlander, Nina Bhardwaj. A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers [abstract]. In: Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; Sept 30-Oct 3, 2018; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2019;7(2 Suppl):Abstract nr A005.

  • ©2019 American Association for Cancer Research.
Previous
Back to top
Cancer Immunology Research: 7 (2 Supplement)
February 2019
Volume 7, Issue 2 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Immunology Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract A005: A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers
(Your Name) has forwarded a page to you from Cancer Immunology Research
(Your Name) thought you would be interested in this article in Cancer Immunology Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract A005: A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers
Ana B. Blazquez, Alex Rubinsteyn, Julia Kodysh, John P. Finnigan, Thomas Marron, Rachel L. Sabado, Marcia Meseck, Timothy J. O'Donnell, Jeffrey Hammerbacher, Michael Donovan, John Holt, Milind Mahajan, John Mandeli, Krysztof Misiukiewicz, Eric M. Genden, Brett A. Milles, Hooman Khorasani, Peter R. Dottino, Hanna Irie, Amy B. Tiersten, Elisa R. Port, Andrea S. Wolf, Hern J. Cho, Ashutosh Tewari, Samir S. Parekh, Sujit Nair, Matthew D. Galsky, William K. Oh, Sacha Gnjatic, Eric E. Schadt, Phillip A. Friedlander and Nina Bhardwaj
Cancer Immunol Res February 1 2019 (7) (2 Supplement) A005; DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A005

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract A005: A phase I study of the safety and immunogenicity of a multipeptide personalized genomic vaccine in the adjuvant treatment of solid cancers
Ana B. Blazquez, Alex Rubinsteyn, Julia Kodysh, John P. Finnigan, Thomas Marron, Rachel L. Sabado, Marcia Meseck, Timothy J. O'Donnell, Jeffrey Hammerbacher, Michael Donovan, John Holt, Milind Mahajan, John Mandeli, Krysztof Misiukiewicz, Eric M. Genden, Brett A. Milles, Hooman Khorasani, Peter R. Dottino, Hanna Irie, Amy B. Tiersten, Elisa R. Port, Andrea S. Wolf, Hern J. Cho, Ashutosh Tewari, Samir S. Parekh, Sujit Nair, Matthew D. Galsky, William K. Oh, Sacha Gnjatic, Eric E. Schadt, Phillip A. Friedlander and Nina Bhardwaj
Cancer Immunol Res February 1 2019 (7) (2 Supplement) A005; DOI: 10.1158/2326-6074.CRICIMTEATIAACR18-A005
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Clinical Trials of Cancer Immunotherapies

  • Abstract A007: Comparison of pretreatment conditioning on efficacy in two cohorts of a pilot study of genetically engineered NY-ESO-1c259T-cells in patients with synovial sarcoma
  • Abstract A010: Personalized neoantigen-targeting vaccines for high-risk melanoma generate epitope spreading
  • Abstract A006: Phase 1 study to evaluate the safety and tolerability of MEDI4736 (durvalumab, durva) + tremelimumab (treme) in patients with advanced solid tumors
Show more Clinical Trials of Cancer Immunotherapies

Clinical Trials of Cancer Immunotherapies: Poster Presentations - Proffered Abstracts

  • Abstract A007: Comparison of pretreatment conditioning on efficacy in two cohorts of a pilot study of genetically engineered NY-ESO-1c259T-cells in patients with synovial sarcoma
  • Abstract A010: Personalized neoantigen-targeting vaccines for high-risk melanoma generate epitope spreading
  • Abstract A006: Phase 1 study to evaluate the safety and tolerability of MEDI4736 (durvalumab, durva) + tremelimumab (treme) in patients with advanced solid tumors
Show more Clinical Trials of Cancer Immunotherapies: Poster Presentations - Proffered Abstracts
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Cancer Immunology Essentials

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Immunology Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Immunology Research
eISSN: 2326-6074
ISSN: 2326-6066

Advertisement