Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Advanced Technologies for Antigen Identification
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Immunology Research
Cancer Immunology Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Advanced Technologies for Antigen Identification
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Cancer Immunology at the Crossroads

Revolutionizing Cancer Immunology: The Power of Next-Generation Sequencing Technologies

Meromit Singer and Ana C. Anderson
Meromit Singer
1Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts.
2Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ana C. Anderson
3Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: acanderson@bwh.harvard.edu
DOI: 10.1158/2326-6066.CIR-18-0281 Published February 2019
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

It has long been appreciated that tumors are diverse, varying in mutational status, composition of cellular infiltrate, and organizational architecture. For the most part, the information embedded in this diversity has gone untapped due to the limited resolution and dimensionality of assays for analyzing nucleic acid expression in cells. The advent of high-throughput, next-generation sequencing (NGS) technologies that measure nucleic acids, particularly at the single-cell level, is fueling the characterization of the many components that comprise the tumor microenvironment (TME), with a strong focus on immune composition. Understanding the immune and nonimmune components of the TME, how they interact, and how this shapes their functional properties requires the development of novel computational methods and, eventually, the application of systems-based approaches. The continued development and application of NGS technologies holds great promise for accelerating discovery in the cancer immunology field.

  • ©2019 American Association for Cancer Research.
View Full Text
PreviousNext
Back to top
Cancer Immunology Research: 7 (2)
February 2019
Volume 7, Issue 2
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Editorial Board (PDF)

Sign up for alerts

View this article with LENS

Open full page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Immunology Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Revolutionizing Cancer Immunology: The Power of Next-Generation Sequencing Technologies
(Your Name) has forwarded a page to you from Cancer Immunology Research
(Your Name) thought you would be interested in this article in Cancer Immunology Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Revolutionizing Cancer Immunology: The Power of Next-Generation Sequencing Technologies
Meromit Singer and Ana C. Anderson
Cancer Immunol Res February 1 2019 (7) (2) 168-173; DOI: 10.1158/2326-6066.CIR-18-0281

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Revolutionizing Cancer Immunology: The Power of Next-Generation Sequencing Technologies
Meromit Singer and Ana C. Anderson
Cancer Immunol Res February 1 2019 (7) (2) 168-173; DOI: 10.1158/2326-6066.CIR-18-0281
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Application of NGS in Cancer Immunology
    • Perspective and Concluding Remarks
    • Disclosure of Potential Conflicts of Interest
    • Authors' Contributions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF
Advertisement

Related Articles

Cited By...

More in this TOC Section

  • Mechanisms of Gut Microbiota–Antitumor Immunity Interactions
  • Targeting Metabolism to Enhance Immunotherapy
  • Pyroptosis in Antitumor Immunity
Show more Cancer Immunology at the Crossroads
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Cancer Immunology Essentials

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Immunology Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Immunology Research
eISSN: 2326-6074
ISSN: 2326-6066

Advertisement