Skip to main content
  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

AACR logo

  • Register
  • Log in
  • My Cart
Advertisement

Main menu

  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

  • AACR Publications
    • Blood Cancer Discovery
    • Cancer Discovery
    • Cancer Epidemiology, Biomarkers & Prevention
    • Cancer Immunology Research
    • Cancer Prevention Research
    • Cancer Research
    • Clinical Cancer Research
    • Molecular Cancer Research
    • Molecular Cancer Therapeutics

User menu

  • Register
  • Log in
  • My Cart

Search

  • Advanced search
Cancer Immunology Research
Cancer Immunology Research
  • Home
  • About
    • The Journal
    • AACR Journals
    • Subscriptions
    • Permissions and Reprints
  • Articles
    • OnlineFirst
    • Current Issue
    • Past Issues
    • Meeting Abstracts
    • Cancer Immunology Essentials
    • Collections
      • COVID-19 & Cancer Resource Center
      • Toolbox: Coding and Computation
      • Toolbox: Signatures and Cells
      • "Best of" Collection
      • Editors' Picks
  • For Authors
    • Information for Authors
    • Author Services
    • Best of: Author Profiles
    • Submit
  • Alerts
    • Table of Contents
    • Editors' Picks
    • OnlineFirst
    • Citation
    • Author/Keyword
    • RSS Feeds
    • My Alert Summary & Preferences
  • News
    • Cancer Discovery News
  • COVID-19
  • Webinars
  • Search More

    Advanced Search

Other Topics

Abstract B84: Preclinical analysis of combinatorial glioblastoma therapy with the prodrug-mediated gene therapy vector AdV-TK and immune checkpoint inhibition

Maria Carmela Speranza, Franz Ricklefs, Carmela Passaro, Sarah R. Klein, Kazue Kasai, Johanna Kaufmann, Hiroshi Nakashima, Bronisz Agnieszka, Estuardo Aguilar-Cordova, Brian W. Guzik, Gordon J. Freeman, David A. Reardon, Patrick Wen, E. Antonio Chiocca and Sean E. Lawler
Maria Carmela Speranza
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Franz Ricklefs
2University Medical Center Hamburg-Eppendorf, Hamburg, Germany,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carmela Passaro
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah R. Klein
3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazue Kasai
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Johanna Kaufmann
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroshi Nakashima
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bronisz Agnieszka
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Estuardo Aguilar-Cordova
4Advantagene, Inc., Auburndale, MA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian W. Guzik
4Advantagene, Inc., Auburndale, MA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gordon J. Freeman
3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David A. Reardon
3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick Wen
3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Antonio Chiocca
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sean E. Lawler
1Brigham and Women's Hospital, Harvard Medical School, Boston, MA,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1158/2326-6074.TUMIMM16-B84 Published March 2017
  • Article
  • Info & Metrics
Loading
Abstracts: AACR Special Conference on Tumor Immunology and Immunotherapy; October 20-23, 2016; Boston, MA

Abstract

Early clinical trial data show that blockade of PD-1 signaling leads to significant anticancer responses in a subset of patients in certain cancer types. While the brain has traditionally been considered to be an immune-privileged site, evidence supporting the use of immunotherapeutics in brain tumors has been rapidly accumulating. Given that virus-based cancer therapies can be immunostimulatory and immune checkpoint inhibitors block the body's natural checkpoint response, the combination of these two approaches offers a potentially advantageous interaction. One of the molecular underpinnings of T-cell exhaustion is the expression of Programmed Death-1 (PD-1) on T-cells that recognizes its ligand PD-L1. AdV-TK is an immunostimulatory virus-based approach, known as Gene-Mediated Cytotoxic Immunotherapy (GMCI), that involves the intra-tumoral delivery of a non-replicating adenoviral vector carrying the Herpes virus thymidine kinase gene (TK) followed by administration of an anti-herpetic prodrug (ganciclovir GCV) and recently showed encouraging results in a Phase II trial in glioblastoma (Wheeler et al., 2016). The immunological component results from the delivery vehicle being a virus, the mode of cell death, through both necrosis and apoptosis, and the pro-immunogenic properties of the TK protein. We confirm that this approach induces glioblastoma cell death and a consistent anti-tumor immune stimulation. Not surprisingly, however, this immune stimulation also leads to increase in cell surface of immune checkpoint inhibitory ligands on tumor cells, including PD-L1, detected by flow cytometry and immunohistochemistry. We show that GMCI induces a type-I interferon response, and using IFN decoy we demonstrated that the release of IFNβ in vitro is at least partially responsible for autocrine/paracrine PD-L1 up-regulation both in human and mouse glioblastoma cell lines. In vivo studies using an intracranial GL261 model showed high numbers of long term survivors in the GMCI/PD-1 combination (11/14), compared with GMCI (6/16), anti-PD-1 (5/12) and untreated (0/11). In addition, long term survival mice were no longer able to form tumors after rechallenge indicating the establishment of anti-tumor immunity. Finally, tumor infiltrating lymphocytes after GMCI showed an increase in CD8+, CD8+/GranzymeB+, and IFNγ+ cells suggestive of cytotoxic T-cell activation. However, there was also a significant increase in CD4+, CD4+/FoxP3+, and IL-10 indicating a significant infiltration by Tregs, releasing immunosuppressive cytokines. Additionally, there was a significant increase in PD-1+ /TIM3+ T-cells, indicative of an immunosuppressive microenvironment. Overall, our data show that GMCI/anti-PD-1 combinatorial therapy is effective in a syngeneic tumor model, and strongly support clinical trials of GMCI/checkpoint inhibitor combinations in glioblastoma patients.

Citation Format: Maria Carmela Speranza, Franz Ricklefs, Carmela Passaro, Sarah R. Klein, Kazue Kasai, Johanna Kaufmann, Hiroshi Nakashima, Bronisz Agnieszka, Estuardo Aguilar-Cordova, Brian W. Guzik, Gordon J. Freeman, David A. Reardon, Patrick Wen, E. Antonio Chiocca, Sean E. Lawler. Preclinical analysis of combinatorial glioblastoma therapy with the prodrug-mediated gene therapy vector AdV-TK and immune checkpoint inhibition. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Immunology and Immunotherapy; 2016 Oct 20-23; Boston, MA. Philadelphia (PA): AACR; Cancer Immunol Res 2017;5(3 Suppl):Abstract nr B84.

  • ©2017 American Association for Cancer Research.
Previous
Back to top
Cancer Immunology Research: 5 (3 Supplement)
March 2017
Volume 5, Issue 3 Supplement
  • Table of Contents

Sign up for alerts

Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for sharing this Cancer Immunology Research article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Abstract B84: Preclinical analysis of combinatorial glioblastoma therapy with the prodrug-mediated gene therapy vector AdV-TK and immune checkpoint inhibition
(Your Name) has forwarded a page to you from Cancer Immunology Research
(Your Name) thought you would be interested in this article in Cancer Immunology Research.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Abstract B84: Preclinical analysis of combinatorial glioblastoma therapy with the prodrug-mediated gene therapy vector AdV-TK and immune checkpoint inhibition
Maria Carmela Speranza, Franz Ricklefs, Carmela Passaro, Sarah R. Klein, Kazue Kasai, Johanna Kaufmann, Hiroshi Nakashima, Bronisz Agnieszka, Estuardo Aguilar-Cordova, Brian W. Guzik, Gordon J. Freeman, David A. Reardon, Patrick Wen, E. Antonio Chiocca and Sean E. Lawler
Cancer Immunol Res March 1 2017 (5) (3 Supplement) B84; DOI: 10.1158/2326-6074.TUMIMM16-B84

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Abstract B84: Preclinical analysis of combinatorial glioblastoma therapy with the prodrug-mediated gene therapy vector AdV-TK and immune checkpoint inhibition
Maria Carmela Speranza, Franz Ricklefs, Carmela Passaro, Sarah R. Klein, Kazue Kasai, Johanna Kaufmann, Hiroshi Nakashima, Bronisz Agnieszka, Estuardo Aguilar-Cordova, Brian W. Guzik, Gordon J. Freeman, David A. Reardon, Patrick Wen, E. Antonio Chiocca and Sean E. Lawler
Cancer Immunol Res March 1 2017 (5) (3 Supplement) B84; DOI: 10.1158/2326-6074.TUMIMM16-B84
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
Advertisement

Related Articles

Cited By...

More in this TOC Section

Other Topics

  • Abstract B170: Therapeutic implications of altered epigenetics and DNA damage responses in IDH2-mutated hematologic diseases
  • Abstract B197: Translational control in macrophages during inflammatory response
  • Abstract B200: Single-cell RNA-sequencing (ScRNA-seq) reveals broad heterogeneity among CD8 T-cells during chronic viral infection and identifies a critical role for CD4 help in promoting the differentiation of a potent cytotoxic CD8 T-cell subset
Show more Other Topics

Other Topics: Poster Presentations - Proffered Abstracts

  • Abstract B170: Therapeutic implications of altered epigenetics and DNA damage responses in IDH2-mutated hematologic diseases
  • Abstract B197: Translational control in macrophages during inflammatory response
  • Abstract B200: Single-cell RNA-sequencing (ScRNA-seq) reveals broad heterogeneity among CD8 T-cells during chronic viral infection and identifies a critical role for CD4 help in promoting the differentiation of a potent cytotoxic CD8 T-cell subset
Show more Other Topics: Poster Presentations - Proffered Abstracts
  • Home
  • Alerts
  • Feedback
  • Privacy Policy
Facebook   Twitter   LinkedIn   YouTube   RSS

Articles

  • Online First
  • Current Issue
  • Past Issues
  • Cancer Immunology Essentials

Info for

  • Authors
  • Subscribers
  • Advertisers
  • Librarians

About Cancer Immunology Research

  • About the Journal
  • Editorial Board
  • Permissions
  • Submit a Manuscript
AACR logo

Copyright © 2021 by the American Association for Cancer Research.

Cancer Immunology Research
eISSN: 2326-6074
ISSN: 2326-6066

Advertisement