Engineering New Approaches to Cancer Vaccines
Naveen K. Mehta¹², Kelly D. Moynihan¹²³, and Darrell J. Irvine¹²³⁴⁵

Abstract

Recently, a number of promising approaches have been developed using synthetic chemistry, materials science, and bioengineering-based strategies to address challenges in the design of more effective cancer vaccines. At the stage of initial priming, potency can be improved by maximizing vaccine delivery to lymph nodes. Because lymphatic uptake from peripheral tissues is strongly size dependent, antigens and adjuvants packaged into optimally sized nanoparticles access the lymph node with much greater efficiency than unformulated vaccines. Once primed, T cells must home to the tumor site. Because T cells acquire the necessary surface receptors in the local lymph node draining the tissue of interest, vaccines must be engineered that reach organs, such as the lung and gut, which are common sites of tumor lesions but inaccessible by traditional vaccination routes. Particulate vaccine carriers can improve antigen exposure in these organs, resulting in greater lymphocyte priming. Immunomodulatory agents can also be injected directly into the tumor site to stimulate a systemic response capable of clearing even distal lesions; materials have been designed that entrap or slowly release immunomodulators at the tumor site, reducing systemic exposure and improving therapeutic efficacy. Finally, lessons learned from the design of biomaterial-based scaffolds in regenerative medicine have led to the development of implantable vaccines that recruit and activate antigen-presenting cells to drive antitumor immunity. Overall, these engineering strategies represent an expanding toolkit to create safe and effective cancer vaccines. Cancer Immunol Res; 3(8); 1–8. ©2015 AACR.

Motivation for Cancer Vaccine Engineering

Therapeutic vaccination is one of the oldest and most studied concepts in cancer immunotherapy. Yet, in contrast with prophylactic vaccines against infectious disease, which have had a major impact on public health, therapeutic vaccines against cancer have generally been much less successful, and only a single cancer vaccine has been FDA approved to date (1, 2). This is likely due to a variety of factors, including a paucity of truly foreign antigens expressed by tumor cells, lack of infection-associated inflammatory cues that drive productive immunity, chronic antigen exposure, the presence of a highly immunosuppressive microenvironment in solid tumors, and our as yet still poor understanding of how to induce strong and sustained T-cell–mediated immune responses in humans. However, there are at least three reasons why cancer vaccines should see renewed interest as part of the cancer immunotherapy armamentarium, based on recent rapid advances in the field: To begin, the advent of clinical-stage therapeutics that can directly influence the immunological status of the tumor microenvironment, such as checkpoint blockade antibodies (3), regulatory T cell (Treg)–modulating chemotherapy (4), and indoleamine 2,3-dioxygenase (IDO) inhibitors (ref. 5; for example), now provide a number of ways to overcome immunosuppressive pathways in patients. Secondly, the availability of an ever-growing array of targeted drugs that can dramatically (but transiently) lower tumor burden provides a window of opportunity for vaccines to act in a setting of minimal disease, and some of these drugs may act synergistically with the immune response (6). Third, the powerful genomic sequencing capabilities are enabling the possibility of patient-specific vaccines targeting defined neoantigens, which have the potential for alleviating the safety and efficacy challenges of targeting unmutated self-antigens (7–10). Together, these recent developments in cancer therapy strongly motivate renewed efforts to develop effective therapeutic cancer vaccine approaches.

How might we enhance the vaccines themselves to enable therapeutic immunization to reach its full potential in this new era of cancer immunotherapy? The first concern is vaccine potency, as measured by the number, functionality, and avidity of antigens–specific T cells induced by cancer vaccines. A number of experimental and licensed infectious disease vaccines induce robust multifunctional CD4⁺ and CD8⁺ T-cell responses in humans that can be detected directly ex vivo and measured even by relatively low-sensitivity methods, such as peptide–MHC tetramer staining (11, 12). By contrast, with a few exceptions (13, 14), the response to cancer vaccines is often only robustly detected by expanding/stimulating patient T cells over 1 to 2 weeks ex vivo (15–17)—a direct indicator of the low frequency of responding cells. These results may be partly due to issues of tolerance to self-antigens and systemic immunosuppression in cancer patients, but also may reflect the common use of minimal-epitope peptide vaccines and weak adjuvants that are known to have immunologic shortcomings (18). Equally important is for vaccines to be capable of promoting T-cell responses enriched in high-avidity, polyfunctional T cells

¹Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. ²Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. ³Ragon Institute of MGH, MIT and Harvard University, Boston, Massachusetts. ⁴Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts. ⁵Howard Hughes Medical Institute, Chevy Chase, Maryland.

N.K. Mehta and K.D. Moynihan contributed equally to this article.

Corresponding Author: Darrell J. Irvine, MIT, MIT Room 76-261, 77 Massachusetts Avenue, Cambridge, MA 02139. Phone: 617-452-4174; Fax: 617-452-3293; E-mail: djirvine@mit.edu

doi: 10.1158/2326-6066.CIR-15-0112

©2015 American Association for Cancer Research.
with high proliferative capacity that avoid induction of an exhausted/terminally differentiated phenotype. Finally, devising vaccine strategies that prime effective trafficking of effector cells to tumor sites is critical, which, in cases such as mucosal tumors, could be directly influenced by vaccines that program expression of appropriate tissue-homing receptors (19). Thus, a number of strategies exist to enhance current vaccine approaches to increase the efficacy of therapeutic antitumor immune responses.

There are many ways to improve therapeutic vaccines rooted in traditional vaccinology principles, such as microbial vector development, molecular biology, and adjuvant design. In this brief Cancer Immunology at the Crossroads perspective, we will review promising recent preclinical and early clinical developments derived from approaches based in immune engineering—bringing methods from chemistry, chemical engineering, materials science, and biological engineering to bear on the problem of therapeutic vaccine design. Such approaches are particularly well suited to augmenting vaccines based on subunit antigen (defined protein, peptide, or polysaccharide epitopes) and tumor-cell proteins/enzymes enriched in genes associated with immune suppression, (21). Migratory DCs were shown to contain expression signatures of antigen-presenting cells, and presentation by enabling antigen and adjuvant to be codelivered into recipient antigen-presenting cells (APC; ref. 43), promoting cross-presentation of antigens (35, 44), and acting as intracellular/extracellular vaccine depots (44, 45). An exciting recent study demonstrated a method to coat polymer nanoparticles with native tumor cell–derived plasma membranes, leading to cross-presentation of tumor membrane–associated antigens, thus providing a means to combine complex tumor-derived antigen mixtures with particle-based LN targeting (46).

A second strategy to target vaccines to LNs is to exploit reversible binding to proteins naturally meeting the size-dependent criteria for effective lymphatic uptake. For example, albumin, the most prevalent protein in blood and interstitial fluid, is a 66-kDa globular protein with a hydrodynamic diameter of approximately
5 nm, and thus traffics one way from the blood to the lymph in the interstitial space. Liu and colleagues conjugated peptide antigens and CpG adjuvant to saturated hydrocarbon lipid tails chosen to promote binding to fatty acid–binding pockets of albumin (28). Importantly, these conjugates comprised an albumin-binding tail linked to the antigen via a highly water-soluble poly(ethylene glycol; PEG) chain. This PEG spacer solubilized the conjugates and prevented them from stably inserting into cell membranes, an important distinction from traditional lipopeptide vaccines. Upon injection, these vaccine amphiphiles bound to albumin, leading to >10-fold increases in LN accumulation relative to the parent vaccine molecules. In therapeutic melanoma and cervical cancer tumor models, lipid-conjugated vaccines were able to significantly delay growth of established tumors at doses at which traditional peptide/adjuvant vaccines were completely ineffective.

Vaccine-Mediated Programming of T-cell Homing to Tumor Sites

It has been observed in many clinical studies that the presence of circulating tumor antigen–specific T cells does not correlate with clinical outcome, and this is consistent with the expectation that activated T cells must home to tumor sites to affect disseminated disease. Cancer vaccines can affect this phase of the immune response by ensuring induction of appropriate tissue-homing receptor profiles on newly primed tumor-specific lymphocytes, as seen in Fig. 1B. A key strategy to control tissue-specific effector-cell trafficking is via choice of vaccination site, because DCs in LNs draining different tissue sites express factors regulating the expression of tissue-homing receptors on T cells primed in these sites. Thus, T cells primed in mediastinal LNs express α4β1 integrins and home to the lungs; DCs in skin-draining LNs induce...
T cells to express cutaneous lymphocyte antigen (CLA) and CCR4 to home to the skin; and DCs of the gut-associated lymphoid tissues secrete retinoic acid, programming expression of CCR9 on T cells for homing to the gut lamina propria (47). While these tissue-specific homing patterns have all been defined in the setting of T-cell trafficking to normal tissues, they are also critical in the therapeutic setting of effector T cells homing to tumor sites. For example, in orthotopic tumor models of head and neck cancer and lung cancer, Sandoval and colleagues demonstrated that mucosal, but not intramuscular, delivery of vaccines can promote CD8-mediated rejection of mucosal tumors (19). Human papillomavirus 16 E7-expressing TC-1 cells were engrafted in the submucosal lining of the tongue or in the lung as model mucosal tumors. Shiga toxin 1 subunit B (StxB) E7 fusions in combination with αGalCer adjuvant were administered intranasally or intramuscularly, and while both vaccines generated systemic CD8+ T-cell responses, intranasal delivery resulted in more efficient tumor clearance in both models. Mechanistically, this was traced to mucosal imprinting of activated antigen-specific T cells, as measured by CD49a and CD103 expression, which allowed for increased persistence of antigen in the lungs 24 hours after administration, and subsequently greatly increased trafficking of antigens to lung-draining LNs several days later. This enhanced antigen delivery translated to >10-fold increases in T-cell priming compared with soluble forms of the same antigen and adjuvant, and enabled pulmonary nanoparticle vaccination to be 100% protective in a lung metastasis model, compared with only 20% protection elicited by the equivalent soluble vaccine (49). For example, in a similar vein, intranasal vaccination with antigen-carrying poly(β-glycerol phosphate) nanoparticles enhanced therapeutic protection against melanoma lung metastases (50). Pulmonary vaccination with PEGylated poly(propylene sulfide) nanoparticles conjugated to antigens using a reduction-sensitive linker combined with soluble CpG has been shown to enhance antigen uptake in lung-draining LNs and subsequent lung-homing antigen-specific T-cell populations (51, 52). Thus, several types of nanoparticle formulations have shown efficacy in enhancing mucosa-homing T-cell responses and mucosal antitumor immunity.

Analogous to pulmonary vaccination for protection of airway mucosal tissues, oral vaccination may facilitate antitumor immunity in the gastrointestinal tract and could thus help protect against cancers of the throat, stomach, intestine, and colon. A nonobvious benefit of vaccinating the gastrointestinal tract is that T-cell priming in the lymphoid organs of the large intestine can induce protection of rectal and vaginal mucosa, which are difficult to vaccinate directly (53). The design of effective oral vaccines that reach the large intestine has been challenging largely because of the low pH and destructive enzymatic activity characteristic of the gut. To solve this problem, Zhu and colleagues developed poly(lactide-co-glycolide; PLGA) nanoparticles that encapsulated peptide antigen and three TLR agonists: MALP-2, poly(I:C), and CpG (53). These nanoparticles were subsequently encapsulated within anionic pH-responsive polymer capsules. The capsules were designed to have mean diameters >10 μm to prevent nonspecific phagocytosis and uptake by Peyer’s patches in the small intestine, and to dissolve at pH values greater than 7, characteristic of the terminal ileum of the large intestine, to allow for vaccine release only in this localized region of interest. Significantly stronger T-cell responses in the large intestine were generated when capsules of appropriate pH responsiveness were used as a coating rather than an alternative polymer that dissolved at more acidic pH. This general delivery strategy may thus hold potential in the treatment of colorectal tumors and establishes a paradigm for targeting other regions of the gastrointestinal tract. Together, these studies demonstrate that physically programmable properties of particulate vaccine carriers can be used to specifically target different organs to direct the immune response to the required site of protection.

Exploiting the Tumor Site as an Antigen Source

A seminal observation in cancer immunology was William B. Coley’s discovery in 1893 that repeated intratumoral injection of bacteria could induce tumor rejection. Nearly 100 years later, trials in humans revealed that intratumoral administration of Bacillus Calmette-Guérin (BCG) in metastatic melanoma lesions resulted not only in the regression of 90% of the injected lesions, but also 17% of distal tumors (54). Although intratumoral injections of immunomodulators are intended to be local treatments, in many cases they can generate a systemic immune response capable of targeting distal tumors in a vaccine-like manner, turning the tumor itself into an **in situ** vaccine, as depicted in Fig. 1C. Importantly, this strategy does not depend on the discovery of tumor-specific antigens, and instead exploits the tumor itself as a source of antigens.

Local administration of diverse immunostimulatory agents to an accessible lesion has been effective at promoting systemic tumor rejection in animal models and in human patients. For example, intratumoral injection of CpG, anti-OX40, and anti-CTLA-4 in mouse lymphoma models can eradicate Tregs from tumors (55). Topical application of a cream prepared with 5% imiquimod, a TLR7 agonist, has been shown to induce 80% histologic clearance in human patients with superficial basal cell carcinoma (56). In some cases, local administration of immunomodulators increases susceptibility to subsequent systemic therapy. In mouse melanoma models with tumors on both the right and left flanks, Zamarin and colleagues showed that oncolytic virus injections into one tumor site increased lymphocytic infiltration in the contralateral tumor site, improving the efficacy of systemically administered anti–CTLA-4 therapy (57). Analogously in humans, results from early clinical trials suggest that stereotactic body radiotherapy, in which radiation is precisely delivered to tumor sites to enhance local inflammation, can improve responses to IL2 therapy in patients with metastatic lesions (58). Despite the promise of intratumoral injections in promoting antitumor immunity, one deficiency in intratumoral administration of soluble therapeutics is that locally applied drugs can still rapidly leak into the systemic circulation. This has been observed...
in many studies in small animals (59–62) and with immunotherapy in humans, in whom intratumorally injected cytokines have been measured in the systemic circulation within minutes (63). Such systemic dissemination both weakens the potency of the therapy by clearing the drug from the tumor and gives rise to systemic inflammatory toxicity.

To promote such “in situ vaccination,” biomaterials have been designed to trap immunomodulatory molecules in the tumor microenvironment. For example, slow-release particles or hydrogels have been injected peritumorally or intratumorally to allow local permeation of tumors with immunostimulatory drugs released from localized depositions. This has been demonstrated with biodegradable microspheres releasing IL12 (62) and hydrogel matrices releasing an IL15 superagonist (64), both of which led to nontoxic but potent induction of CD8+ T-cell responses against treated tumors. Such approaches can enable otherwise toxic treatments to be safely administered while eliciting systemic antitumor immunity. For example, anti-CD137 and IL2 administered directly into solid melanoma tumors disseminated into the systemic circulation, inducing systemic inflammation, including IL6 and TNFα in serum and major weight loss in mice (60). However, intratumoral injection of these same immunomodulators covalently anchored to liposomes prevented their dissemination outside of the local microenvironment (60, 61), eliminating their toxicity and enabling the drugs to remain concentrated at the tumor site for 96 hours after injection. These intratumoral immunoliposomes acted as vaccines and elicited systemic T-cell responses; mice that rejected treated tumors on one flank could also substantially delay the growth of an untreated tumor on the contralateral flank in the complete absence of supporting systemic therapy. Thus, even relatively simple strategies can be employed to significantly alter the efficacy and safety of immunotherapeutic drugs in this setting.

Active Depots with Implantable Vaccine Scaffolds

The only FDA-approved cancer vaccine to date is Provenge (sipuleucel-T; Dendreon), an autologous cell-based therapeutic vaccine against castration-resistant metastatic prostate cancer (65). Although this vaccine was shown to extend survival in prostate cancer patients by 4 months, its implementation is clinically complex. Briefly, peripheral blood is first collected from patients, shipped to a cell preparation facility, treated with antigen ex vivo, shipped back to the clinical site, and subsequently reinfused into the patient. Clinical trials of related processes based on the isolation of precursor cells, differentiation of these cells into DCs in vitro, activation and antigen loading of the resulting DCs, and injection as cellular vaccines have also shown promise (66, 67) but with the same logistical concerns. In an attempt to harness the power of DC vaccines without the practical limitations of cell therapy, several strategies have been developed to create implantable or injectable implants that would mimic this series of ex vivo treatment steps directly in patients. The common premise of these approaches is to employ a synthetic matrix or scaffold that when placed in vivo (e.g., following a minor subcutaneous implantation procedure) would release/present cues in the local tissue that enable the processes of attracting, differentiating, activating, and antigen loading of DCs, which would subsequently traffic to local draining LNs to initiate an antitumor immune response. This concept leverages a large body of experience from the tissue engineering and regenerative medicine field, where biomaterial scaffolds designed to attract and program cell fate have been studied for more than 20 years (68). These biodegradable scaffolds may release immunomodulatory agents with defined spatial and temporal profiles that can be engineered by manipulating the material properties of the implant. Multiple agents can be loaded into a single immunomodulatory scaffold, including antigen, adjuvant, and cytokine support, and they can be designed to promote cell recruitment and modulation within the scaffold.

One of the first reports of a DC-programming vaccine system utilized millimeter scale polymer rods that released the chemotactrant CCL19 along with tumor lysate as an antigen preparation (69). These attractant-releasing implants recruited APCs to the vaccine site, which correlated with enhanced tumor regression in a therapeutic lung carcinoma model. More recently, Ali and colleagues designed centimeter-scale porous polymer disks composed of PLGA, the same polymer used in resorbable sutures; these disks were loaded with three components: GM-CSF, CpG DNA, and tumor lysate, as shown in Fig. 1D (70). These scaffolds released GM-CSF to recruit and differentiate DCs into the structure and CpG as a danger signal to activate DCs internalizing antigens in the tumor lysate. These scaffolds were capable of protecting mice from B16F10 melanoma challenge in a prophylactic setting. In a follow-up study, this scaffold vaccine, in combination with vaccination using irradiated tumor cells transduced to express GM-CSF, was shown to also greatly enhance protection relative to nonscaffolded vaccines or GM-CSF–producing tumor cell–based vaccination alone in the therapeutic setting, results that correlated with enhanced recruitment of plasmacytoid DCs, cross-presenting CD8+ DCs, and elevated IL12 production in the scaffold implants (71). In a rat glioma model, PLGA scaffold vaccines implanted after partial tumor resection resulted in significantly enhanced survival over control blank PLGA matrices (72). Efficacy in this model was only seen when scaffolds were placed next to the resection site but not within the resection site, highlighting the importance of implantation site for these implantable scaffold-based vaccines. Based on these encouraging preclinical results, this promising PLGA scaffold vaccine system was recently moved into a first-in-human phase I trial in patients with melanoma (73).

A number of strategies have sought to generate an in situ–forming immunomodulatory depot that does not require surgical implantation like the PLGA-based scaffolds described above. A recent report described a study in which antigen and adjuvant were mixed with chitosan and hydroxyapatite and coinjected with cross-linking agent triplyphosphate and chondroitin sulfate via a two-needle aligned injection (74). These two aqueous solutions cross-linked in vivo to form a biodegradable hydrogel vaccine that was capable of inducing humoral responses durable for more than a year after implantation following a single injection; this type of sustained release implant may also be of interest for driving antitumor T-cell responses. In a second example, Kim and colleagues demonstrated that biodegradable mesoporous silica rods could nonspecifically coalesce to form a scaffold-like structure following subcutaneous injection (75). When formulated with GM-CSF, CpG, and antigen, these injectable scaffolds recruited DCs and primed T-cell responses that were capable of delaying the outgrowth of ovalbumin-expressing tumors in a prophylactic setting. Although still in early stages of preclinical development, these “injectable-scaffold” approaches may provide a facile strategy to repeatedly prime and boost antitumor immunity. Both
implanted and injectable matrix-based vaccines are powerful technological platforms for examining the importance of timing, dosing, and physical localisation of immunostimulatory cues on the output immune response, making these systems potential therapeutics and valuable tools for determining how these factors quantitatively influence the immune response.

Conclusions

Although traditional techniques inspired by prophylactic vac-
cines activate immune responses, new vaccine concepts are of
interest to overcome tumor antigen tolerance and tumor-induced
immunosuppression in the setting of advanced cancer and to
drive immune responses of the appropriate magnitude and qual-
ty to treat large metastatic tumor burdens. Approaches grounded
in engineering methods for creating synthetic materials and
synthesizing new molecules offer a number of strategies to
enhance cancer immunotherapy and cancer vaccines in particular,
including improving the delivery of vaccine components to
lymphoid organs, optimally programming activated T cells to
home to tumor sites, prolonging immunomodulation of lesions
following intratumoral injection, and programming sequential
events in immunization from a single injectable or implantable
device. Overall, such engineering-based approaches have shown
great promise in preclinical models, and the next few years should
see a number of these approaches moving into clinical testing in
patients.

Disclosure of Potential Conflicts of Interest

D.J. Irvine has ownership interest (including patents) in and is a consultant/
advisory board member for Vedanta Pharmaceuticals. No potential conflicts of interest were disclosed by the other authors.

Grant Support

This work was supported by grants from the NIH (CA174795 and
CA172164), the V Foundation, and the Bridge Project of the Koch Institute
and the Dana-Farber/Harvard Cancer Center. K.D. Moynihan is supported
by a graduate fellowship from the Hertz Foundation. K.D. Moynihan and
N.K. Mehta are supported by graduate research fellowships from the NSF.

Received April 23, 2015; accepted May 29, 2015; published OnlineFirst July 8,
2015.

References

6. Vanneman M, Dranoff G. Combining immunotherapy and targeted ther-
26. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutane-

Engineering New Approaches to Cancer Vaccines

Naveen K. Mehta, Kelly D. Moynihan and Darrell J. Irvine

Cancer Immunol Res Published OnlineFirst July 8, 2015.

Updated version Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-15-0112

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.