Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model

Lei Wang¹, Zohreh Amoozgar¹*, Jing Huang¹#, Mohammad H. Saleh¹, Deyin Xing², Sandra Orsulic³, Michael S. Goldberg¹

¹Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA.
²Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
³Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
*Present address: Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
#Present address: Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.

Abstract
The lack of second-line treatment for relapsed ovarian cancer necessitates development of improved combination therapies. Targeted therapy and immunotherapy each confers clinical benefit, albeit limited as monotherapies. Ovarian cancer is not particularly responsive to immune checkpoint blockade, so combination with a complementary therapy may be beneficial. Recent studies have revealed that a DNA methyl transferase inhibitor, azacytidine, alters expression of immunoregulatory genes in ovarian cancer. In this study, the antitumor effects of a related DNA methyl transferase inhibitor, decitabine (DAC), were demonstrated in a syngeneic murine ovarian cancer model. Low-dose DAC treatment increases the expression of chemokines that recruit NK cells and CD8⁺ T cells, promotes their production of IFN-γ and TNF-α, and extends the survival of mice bearing subcutaneous or orthotopic tumors. While neither DAC nor immune checkpoint blockade confers durable responses as a monotherapy in this model, the efficacy of α-CTLA-4 was potentiated by combination with DAC. This combination promotes differentiation of naïve T cells into effector T cells and prolongs cytotoxic lymphocyte responses as well as mouse survival. These results suggest that this combination therapy may be worthy of further consideration for improved treatment of drug-resistant ovarian cancer.
Introduction

Effective treatment options for ovarian cancer remain limited, as most patients relapse. Immunotherapy can address disease that is refractory to conventional treatment options and represents an exciting new modality to achieve durable patient responses (1). Still, the percentage of such responders could be improved greatly. Improving the immunogenicity of tumors represents one approach to overcome a tumor’s evasion of the immune system (2). Similarly, inhibiting immune checkpoint pathways, such as CTLA-4, which attenuates T cell activation and related antitumor responses, can improve patient outcomes.

CTLA-4 blockade counteracts the immunosuppressive effects of regulatory T cells (Tregs) (3, 4) and stimulates effector T cell activation, expansion, function, and motility (5,6). CTLA-4 blockade can also eliminate myeloid-derived suppressor cells (MDSCs), which contributes to improving the survival of mice bearing ovarian tumors (7). The therapeutic benefits of targeting checkpoint blockade have been validated in patients with advanced solid tumors (8), including ovarian cancer (9). While promising, the responses to date benefit only a minority of patients. The administration of an appropriate complementary therapy is expected to improve the magnitude and frequency of responses.

Epigenetic modifiers have gained considerable attention of late in the pursuit of antitumor compounds that do not impart the harsh side effects of cytotoxic chemotherapeutics, as epigenetic patterns differ between normal cells and cancer cells, enabling discrimination (10). The effects of these drugs are thought to be particularly profound in the context of cancer stem cells (11) and drug-tolerance heterogeneity (12).

While DNA hypomethylation is often thought to relieve repression of tumor suppressor genes (13), there is emerging evidence that DNA methyl transferase inhibitors induce expression of immunoregulatory genes in cancer cells (14, 15). Among those cancers investigated to date, this effect is most pronounced in ovarian cancer cells (16). Treatment of ovarian cancer cells with the DNA methyl transferase inhibitor DAC (17) results in expression of cancer testis antigens and MHC Class I, increasing cancer cell recognition by CD8^+^ T cells (18). DAC similarly restores expression of cytokines, cancer testis antigens, MHC Class I and II, and co-stimulatory molecules in cancer patients (19, 20). These findings support the hypothesis that DAC will synergize with cancer immunotherapies.

In this study, we investigated the impact of DAC on global gene expression in ovarian cancer cells and found the most upregulated class to be immunoregulatory genes. We then confirmed that DAC increases the infiltration and antitumor function of tumor-associated lymphocytes, which are associated with a survival benefit in subcutaneous and orthotopic ovarian tumors. Finally, we combined DAC with immune checkpoint blockade antibodies and found a synergy between DAC and CTLA-4. The mechanism of synergy is related to the kinetics of lymphocyte cytokine production, which is sustained by α-CTLA-4 following early but transient induction by DAC. The combination of epigenetic modifiers and immune checkpoint blockade is currently being investigated in the treatment of non-small cell lung cancer (NCT01928576), and the data herein suggest that such a combination may benefit ovarian cancer patients as well.
Materials and Methods

Microarray analysis after DAC treatment
BR5FVB1-Akt cells, generated as previously described (21), were seeded in a 24-well plate overnight and were incubated with 10 μg/ml of DAC for 72 h, changing the media and drug every 24 hours. Cells were harvested, and total RNA was extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA). RNA concentration was measured using the Nanodrop (Thermo Fisher Scientific, Rockville, MD), and whole-transcript gene array (Mouse gene ST 2.0) was performed by the Molecular Biology Core Facility at Dana-Farber Cancer Institute. The data were analyzed using Affymetrix Transcriptome Analysis Console software. A total of 34,472 genes were included in the analysis. A linear fold change of 2 was used as a minimum threshold value, and Gene Functional Classification Tool (DAVID Bioinformatics Resources 6.7, NIAID/NIH), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and GO-map analysis were used to annotate pathways of differentially regulated genes. The data are deposited in the Gene Expression Omnibus (GEO) under the accession number GSE69454.

Quantitative reverse transcription PCR (qRT-PCR) validation of gene expression changes upon DAC treatment
BR5FVB1-Akt cells were treated with DAC as above. The relative gene expression of Ccl2, Ccl5, Cxcl10, Il6, Irf7, and Tnfrsf18 (GitrL) was measured using the Ambion® Cells-to-CT™ Kit 1-Step Power SYBR® Green Kit (Life Technologies, Carlsbad, CA) and the Applied Biosystems 7500 Fast real-time PCR system and software. Mouse β-actin was used as the endogenous housekeeping gene for normalization. All qRT-PCR assays were carried out in technical triplicate with biological duplicate, and the experiments were repeated independently 2-3 times.

Mouse intraperitoneal and subcutaneous syngeneic ovarian cancer models
BR5FVB1-Akt cells were cultured in DMEM with 10% FBS and 1% penicillin/streptomycin at 37°C with 5% CO₂. Six-week-old female FVB mice were obtained from Charles River Laboratory (Boston, MA). Mice were housed in a pathogen-free facility in accordance with the standards of the Dana-Farber Cancer Institute. All animal experiments were approved by the Institute’s IACUC. Mice were kept in groups of 3-5 per cage in a 12 h light/12 h dark cycle and housed at 25°C with 50% relative humidity. For the intraperitoneal model, 4 million BR5FVB1-Akt cells were injected into the peritoneal cavity, and the mice were sacrificed upon development of pronounced ascites. In the absence of treatment, hemorrhagic ascites was formed 20-30 days after tumor cell inoculation. For the subcutaneous model, 2 million BR5FVB1-Akt cells were implanted subcutaneously into FVB mice on the left flank. Tumors formed 30-40 days post implantation, and the mice were sacrificed when the tumor size reached 2 cm³.

Drug treatment and combination therapy in vivo
DAC was dissolved in DMSO (5 μl) and mixed with PBS (95 μl). 1 mg/kg of DAC (Selleckchem, Houston, TX) was injected intraperitoneally on days 4, 6, and 8 post-BR5FVB1-Akt cell inoculation for both intraperitoneal and subcutaneous models. For combinational therapy, 100 μg anti-CTLA-4 antibody (Clone: 9H10) or hamster IgG isotype control in PBS was additionally administrated to mice on days 5, 7, and 9 post-tumor inoculation. All antibodies
were purchased from BioXCell, West Lebanon, NH. Mouse ascites and subcutaneous tumors were monitored daily.

Immunohistochemistry analyses of subcutaneous tumor sections

Tumors from solvent control- and DAC-treated groups were collected on day 42 and fixed in 4% paraformaldehyde at 4°C for at least 48 hours, followed by submmerging the fixed tissues in 30% sucrose for 24 hours. The tissues were embedded in OCT and cryosectioned to slices 10 μm in thickness. Slides were permeabilized with 0.2% Triton in PBS and blocked in 2% BSA in PBS for 30 minutes prior to incubation with anti-mouse/rat FoxP3 antibody (eBiosciences 11-5773-82, San Diego, CA), anti-mouse CD8a antibody (Biolegend 100706, San Diego, CA), and anti-mouse CD45 antibody (Biolegend 103112) for 1 hour at room temperature. To enhance the green-fluorescent signal, Alexa Fluor® 488 Conjugate (Invitrogen A11096, Grand Island, NY) was added following the primary antibody incubation. Slides were mounted in SlowFade Gold anti-fade reagent with DAPI and immediately imaged using a Leica TCS SP5 X confocal laser scanning microscope (Leica Microsystems Inc., Buffalo Grove, IL).

Flow cytometric analysis of tumor-infiltrating lymphocytes

Tumors were harvested on day 45 post-tumor cell implantation, weighed dry, cut into small pieces, and incubated in collagenase solution in a 37°C water bath for 2 hours. GentleMACs was used at end of the incubation to improve homogenization. The dissociated tumors were passed through a 70 μm filter to generate single-cell suspensions, and red blood cells were lysed as necessary. Cells were blocked with 2% FBS and anti-mouse CD16/32 (TruStain fcX, Biolegend) in PBS for 10 minutes at 4°C. Next, they were stained with the following cocktail of fluorescently labeled antibodies: anti-CD3, anti-CD4, anti-CD8a, anti-Nkp46. The cells were fixed and permeabilized using the FoxP3 buffer kit (eBioscience) for intracellular staining of FoxP3. Cells were then analyzed on a BD Fortessa or BD LSR II using FlowJo software.

Flow cytometric analysis of tumor-associated lymphocytes in peritoneal cavity

The mice were sacrificed 14 or 42 days after tumor cell inoculation. A peritoneal wash was performed by injecting cold saline solution (2% FBS in PBS) into the mouse peritoneum, followed by gentle massage. The cell-containing saline solution was then collected. Again, red blood cells were lysed as necessary. For phenotypic analyses, the following antibodies were used: anti-CD3, anti-CD4, anti-CD8a, anti-CD44, anti-CD62L, anti-Ki67, anti-CD25, anti-Nkp46, anti-F4/80, anti-CD11b, anti-Gr1, anti-Ly6G, anti-CD11c, and anti-FoxP3. For functional assays, the cells were stimulated with phorbol 12-myristate 13-acetate (PMA; 50 ng/mL) and ionomycin (500 ng/mL) with Golgi-Stop (BD Biosciences) in RPMI medium (supplemented with 10% FBS and 1% penicillin/streptomycin). An anti-CD107a antibody was also added during stimulation to evaluate degranulation. Following stimulation, surface and intracellular staining were performed using the following antibodies: anti-CD3, anti-CD4, anti-CD8a, anti-Nkp46, anti-FoxP3, anti-IL10, anti-IFN-γ, and anti-TNF-α. Samples were analyzed on a BD Fortessa or BD LSR II using FlowJo software. All antibodies were purchased from Biolegend, except anti-Nkp46, which was purchased from eBioscience.

Statistical analysis
Statistical analyses were performed using a two-tailed Student’s t test (GraphPad Prism). Error bars denote mean ± SD. A p value less than 0.05 was considered to be statistically significant (*p<0.05; **p<0.005; ***p<0.0005; ****p<0.0001).

Results

DAC treatment induces an immune-related gene expression signature
The DNA methyl transferase inhibitor azacitadine has immunomodulatory effects on multiple cancer types, particularly ovarian cancer (16). To explore the impact of the closely related deoxyazacitadine (DAC) (17) on gene expression in this tumor model, we performed a genome-wide microarray analysis of BR5FVB1-Akt cells treated with DMSO control or DAC for 72 h. Out of 34,472 unique genes investigated, 83 genes were up-regulated and 28 genes were down-regulated by at least two-fold following DAC treatment. Heat map analyses demonstrate that control- and DAC-treated cells exhibit different global gene expression profiles (Fig. 1A), and the most upregulated Gene Ontology signature is “immune system process” (Fig. 1B). KEGG pathway analysis reveals that the DAC up-regulated genes are involved in multiple immune-related signaling pathways, such as cytokine-cytokine receptor interaction, chemokine signaling pathway, and MAPK and TLR signaling pathways (Fig. 1C). Their encoded proteins may contribute significantly to T cell and NK cell migration toward the tumor site and subsequent proliferation and antitumor function (22, 23).

The functional groups of the modulated genes were determined using Gene Functional Classification Tool (DAVID Bioinformatics Resources 6.7, NIAID/NIH) and are shown in Supplementary Table 1. To validate the microarray results, we assessed the levels of several noteworthy immune-related genes by qPCR. BR5FVB1-Akt cells were treated with DAC, and their RNA was harvested after 72 h. qPCR analysis confirmed that treatment with DAC upregulates all of the genes inspected (Ccl2, Il6, Cxcl10, Ccl5, GitrL, Ccl5, and Irf7) (Fig. 1D). DAC treatment also upregulates surface major histocompatibility complex I (H-2Kq haplotype) on BR5FVB1-Akt cells in a dose-dependent manner (Supplementary Fig. 1). These results revealed an association between DAC treatment and the expression of immune-related genes.

DAC inhibits tumorigenicity in vivo
The therapeutic potential of DAC was subsequently examined in vivo using an orthotopic syngeneic tumor model. BR5FVB1-Akt cells were inoculated intraperitoneally (i.p.) into FVB mice, and DAC was administered i.p. at a dose of 1.0 mg/kg on days 4, 6 and 8 post tumor inoculation (Fig. 2A). An equivalent volume (100 μl) of DMSO/PBS (“solvent”) was administered to a second cohort as a negative control. The tumor-bearing mice developed hemorrhagic ascites gradually in the peritoneal cavity and had to be euthanized by day ~25 in the absence of treatment. Tumors were detectable post-mortem as nodules of various sizes adherent to the omentum, peritoneal wall, or intestinal mesentery. The onset of ascites in DAC-treated mice is delayed by ~10 days, and the survival of these mice is significantly improved relative to control mice (p<0.01, Fig. 2B).

DAC treatment enhances infiltration of NK cells and cytokine production by CD8+ T and NK cells in the peritoneal cavity
Next, we sought to determine how DAC mediated its antitumor effect. Orthotopic tumors were generated, and tumor-bearing mice were treated with solvent or DAC as above. On day 14 post-inoculation, peritoneal fluid was collected and tumor-associated leukocytes (TALs) were analyzed by flow cytometry. Representative figures of flow cytometric analysis for various leukocytes, such as CD4+ helper T cells, CD8+ cytotoxic T cells, NK cells, CD4+ regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs), are shown (Fig. 3A). The percentage of NK cells increased and the percentage of MDSCs decreased in DAC-treated mice compared to those in control mice (Fig. 3A and B). The percentages of CD4+ helper T cells, CD8+ cytotoxic T cells, and Tregs did not differ significantly (Fig. 3B), nor did the percentages of macrophages, neutrophils, and dendritic cells (data not shown).

To elucidate the functional capacity of effector lymphocytes in the tumor environment, we evaluated the expression levels of IFN-γ and TNF-α among CD8+ cytotoxic T lymphocytes and NK cells that had been recovered from control- or DAC-treated mice. Representative figures of flow cytometric analysis of these immune effector molecules are shown for CD8+ T cells and NK cells (Fig. 3C). Following DAC treatment, the expression of both IFN-γ and TNF-α was significantly upregulated in both lymphocyte populations (Fig. 3D). These data suggest that DAC treatment recruits NK cells, promotes NK cell and CD8+ T cell antitumor function in the tumor microenvironment.

DAC treatment increases the number of intratumoral T cells and NK cells and recruits CD8+ T cells into tumor-draining lymph nodes

As with the human presentation of the disease, the orthotopic tumor nodules are spread diffusely throughout the peritoneal cavity, so harvesting sufficient bulk tissue is challenging for flow cytometric analyses. Thus, to further investigate the phenotypes and functions of immune cells in solid tumor masses, subcutaneous (s.c.) tumors were generated. On day 45 post-inoculation, tumors were collected, photographed, and weighed. Tumor-draining lymph nodes and spleens were also collected to enable a systematic study of the immune compartment. BR5FVB1-Akt cells were inoculated s.c. into FVB mice, and DAC was administered at a dose of 1.0 mg/kg via i.p. injection on days 4, 6 and 8 after tumor inoculation (Fig. 2A). An equivalent volume (100 μl) of solvent was administered to a second cohort as a negative control. More than one third of DAC-treated mice achieved a complete response (Fig. 4A), as evidenced by a lack of palpable tumor over 120 days. To inspect the mechanism underlying this survival benefit, additional cohorts of mice were sacrificed on day 35 post-inoculation. Tumors isolated from mice receiving DAC exhibited a reduction in weight relative to tumors from control mice (Fig. 4B). The frequency of tumor-infiltrating CD8+ cytotoxic T cells, NK cells, and CD4+ helper T cells are increased in DAC-treated mice (Fig. 4C and E). A higher ratio of tumor-infiltrating CD8+/Treg, which is associated with favorable prognosis in ovarian cancer (24), was also observed in DAC-treated mice.

We confirmed the increased density of CD8+ T cells in tumor tissue by immunofluorescence staining and confocal imaging. Serial tumor biopsies from control and DAC-treated mice were stained for CD8, CD45, and DAPI. We found very few infiltrating CD8+ T cells or CD45+ leukocytes in tumors from control mice but a reasonably dense infiltrate of these cells in tumors from DAC-treated mice (Fig. 4G, Supplementary Fig. 2), mirroring the flow cytometry findings for CD8+ T cells. CD8+ T cells were also observed in elevated concentrations in tumor-draining
lymph nodes following therapy treatment (Fig. 4D and F). In contrast, their numbers in the spleen were unaltered by DAC treatment (data not shown), indicating the drug’s effects are concentrated at the s.c. tumor site and tumor-draining lymph node despite being administered i.p.

CTLA-4 blockade synergizes with DAC to extend the survival of tumor-bearing mice

DAC exhibited significant but incomplete therapeutic efficacy as a monotherapy in this ovarian cancer model. This mechanistic study reveals that DAC modulates the function of CD8^+ T cells and NK cells in the peritoneum and increases their frequency in s.c. tumors. We hypothesized that immune checkpoint blockade would synergize with DAC therapy to combat tumorigenicity and promote antitumor immunity by enhancing CD8^+ T cell and NK cell responses. Orthotopic tumors were generated, and tumor-bearing mice were dosed according to the schedule in Fig. 5A. Combining DAC with \(\alpha\)-CTLA-4 substantially delayed the onset of ascites relative to either monotherapy, with a majority of the mice achieving a complete response for a period of 90 days after tumor inoculation (Fig. 5B).

Combination treatment increases effector memory T cell density, inflammatory cytokine production, and degranulation

Next, we inspected the mechanism underlying the survival benefit achieved by combining DAC and \(\alpha\)-CTLA-4. Orthotopic tumors were generated, and tumor-bearing mice were administrated with either DAC plus isotype antibody or DAC plus CTLA-4 blockade, following the same dosing schedule shown in Fig. 5A. On day 42 post-tumor inoculation, peritoneal fluid was collected and TALs were analyzed. Phenotype analysis of CD8^+ T cells, CD4^+ T cells, Tregs, and NK cells showed no significant changes between two groups (data not shown). However, effector memory (CD44^hiCD62L^lo) CD8^+ and CD4^+ T cell populations were highly enriched, with a concomitant decrease in naïve T cells in the combination group relative to DAC monotherapy (Fig. 6A-D). Ki67 expression on TALs was also increased in both CD8^+ and CD4^+ T cell populations (Fig. 6E and F), indicating increased cell proliferation. The frequency of central memory T cells was unaffected by CTLA-4 blockade (Fig. 6A-D).

Production of IFN-\(\gamma\) and TNF-\(\alpha\) by CD8^+ T cells (Fig. 6G and H) and NK cells (Fig. 6I and J) was elevated in the combination group, suggesting that these cells were functionally engaged in antitumor immunity. Indeed, NK cells exhibited increased degranulation, as determined by CD107a staining (Fig. 6K and L), suggesting that NK cells directly execute cell killing in the context of the increased pro-inflammatory microenvironment. Notably, CTLA-4 was recently shown to be expressed on NK cells upon their activation and to inhibit their production of IFN-\(\gamma\) (25). Consistently, we observed that CTLA-4 blockade promotes IFN-\(\gamma\) production by NK cells.

Immune response to DAC is sustained by the addition of \(\alpha\)-CTLA-4

TALs in DAC-treated mice displayed high cytokine production at an early time point (day 14) relative to the control group (Fig. 4A) but relatively low cytokine secretion at a late time point (day 42, Fig. 7A). We therefore investigated TAL function of DAC plus isotype group and the DAC plus \(\alpha\)-CTLA-4 group at early and late stages of disease. As described above, peritoneal fluid from mice treated with DAC plus isotype or DAC plus \(\alpha\)-CTLA-4 was collected. Cytokine production from CD8^+ T and NK cells was analyzed on days 14 and 42 post-tumor inoculation. We surprisingly observed a slight decrease of lymphocyte function after addition of \(\alpha\)-CTLA-4 at the early time point (Fig. 7p>0.05 in Fig. 7A-C, p=0.0129 in Fig. 7D). However, lymphocyte
function was greatly decreased at day 42, compared to day 14, in the DAC plus isotype group. In contrast, relatively high levels of cytokine were sustained in the combination treatment group at the later time point (Fig. 7). These data suggest that the immune response initiated in response to DAC treatment can be prolonged by the addition of α-CTLA-4.

Discussion

In this study, we evaluated a novel drug combination regimen for epithelial ovarian cancer and explored the underlying mechanisms using an orthotopic mouse model. The approach uses an epigenetic modifier, DAC, in combination with immune checkpoint blockade, α-CTLA-4. We show a prolonged cytotoxic lymphocyte response in the context of combination therapy and the resultant synergetic effect on survival.

From animal experiments to clinical trials, DAC has been investigated as a sensitizer to immunotherapy (26). Of note, its ability to induce expression of cancer-testis antigens (19, 27), most notably NY-ESO-1 for improved vaccination of ovarian cancer patients (28), is well established. Microarray analysis previously demonstrated that azacitadine, another clinically available hypomethylating agent, yields substantial immunomodulatory effects on ovarian cancer cell lines (16). Our microarray data agree with the previous report and show that the most upregulated Gene Ontology signature is “immune system process” following 3 days of DAC treatment. The upregulated genes are involved in several significant pathways that regulate T cell trafficking and function. For example, the chemokines CCL2, CCL5, and CXCL10 are known to contribute to NK cell (29, 30) and CD8+ T cell (31, 32) recruitment into the tumor microenvironment. Upregulation of these genes is expected to promote lymphocyte infiltration and antitumor function. While cellular stress is likely partially responsible for the observed effects, DAC is not particularly cytotoxic at the dose used (Supplementary Fig. 3), supporting the notion that epigenetic modification is important to the phenotype (14-16).

DAC treatment additionally increases expression of Tnfsf18 (GitrL), which is the ligand for the T cell costimulatory molecule GITR. GITR ligation enhances the infiltration and activity of effector T cells (33) and NK cells (22, 34) and generates effector T cells that are resistant to the immunosuppressive effects of Tregs (35). These data suggest that DAC not only has cancer cell-intrinsic antitumor effects but also modifies the tumor microenvironment to promote T cell infiltration and antitumor function. DAC does not affect T cell proliferation in vitro (data not shown), suggesting that DAC’s effect on T cells is indirect, mediated through the drug’s action on cancer cells. DAC also directly augments NK cell responses to activating stimuli, such as IL-2 or target cancer cells, and promotes NK cell-mediated cytotoxicity and IFN-γ production in vitro by inducing transcription of genes involved in NK reactivity (36). These effects contrast with the impact of the related compound azacytidine, which impairs NK function (36).

We then evaluated the therapeutic benefits of DAC in an orthotopic ovarian cancer model using the BR5FVB1-Akt cell line, which lacks p53 and Brca1 and overexpresses Myc and Akt. These genetic alterations recapitulate the most common genetic alterations observed among ovarian cancer patients (37, 38). Importantly, this animal model resembles the human disease phenotypically as well as genetically. As seen in the human presentation of ovarian cancer, the
cancer cells disseminate throughout the peritoneal cavity and metastasize to the peritoneum wall, intestine, liver, and spleen, causing hemorrhagic ascites as well as occasional bowel obstruction and cachexia. Treating mice with DAC significantly delays ascites formation as well as tumor growth. Subcutaneous tumors in mice that received DAC exhibit a significant reduction in growth, with 40% of these mice achieving a complete response.

Immune cell phenotyping shows that DAC-treated mice recruit more NK cells and fewer MDSCs into their peritoneal cavities. MDSCs promote tumor progression via multiple suppressive mechanisms (39). Consistent with our results, it has been observed that the frequency of tumor-infiltrating MDSCs is also decreased in the B16 murine melanoma model in response to DAC treatment (40). NK cells are important in innate immune responses against tumors by direct cytolysis of cancer cells (41) and by antibody-dependent cellular cytotoxicity (ADCC) (42). The low response rate associated with trastuzumab (anti-HER2) monotherapy is thought to be related to impaired NK cell function in patients with advanced disease, suggesting that treatments that improve NK cell activity may promote both ADCC in addition to direct cytolysis (43). Thus, DAC might be particularly useful in combination with a depleting isotype of α-PD-L1, promoting infiltration of NK cells whilst augmenting their ability to kill PD-L1-expressing epithelial cancer cells and myeloid-derived suppressor cells.

In the orthotopic setting, DAC enhances the function of tumor-associated CD8+ T cells and NK cells. Production of the Th1 cytokines IFN-γ and TNF-α is greatly increased in CD8+ T and NK cells isolated from DAC-treated mice. These pro-inflammatory cytokines play a critical role in surveillance against ovarian tumor development (44). Additionally, DAC treatment induces CD80 expression on cancer cells and stimulates tumor-specific cytotoxic T lymphocyte responses (45). Consistently, CD80 expression on BR5FVB1-Akt cells is increased 3-fold following DAC treatment in vitro (Supplementary Fig. 3). CD80 may be further upregulated in vivo owing to the increased IFN-γ and TNF-α production from TILs, as surface expression of CD80 can be induced in cancer cell lines and fibroblasts in response to IFN-γ and TNF-α stimulation (46, 47).

CTLA-4 is a homolog of the co-stimulatory molecule CD28 and acts to suppress T cell function by competing with CD28 for their shared ligands CD80 and CD86 on antigen presenting cells and many cancer cells. Binding of CTLA-4 to these ligands inhibits TCR signaling. α-CTLA-4 can reverse such immunosuppression by limiting the activity of tumor-infiltrating Tregs and through FcγR-dependent depletion of intratumoral Tregs (4). CTLA-4 expression is induced on CD4+ and CD8+ T cells following activation and is constitutively expressed on Tregs (48). A recent study demonstrated that CTLA-4 is also expressed on NK cells upon activation and inhibits their production of IFN-γ (25). Together, these findings support the potential synergy between DAC and α-CTLA-4.

This therapeutic combination yields a much greater antitumor effect than either treatment alone. Mechanistically, the combination promotes the differentiation of naïve T cells into effector CD8+ and CD4+ T cells and enhances their proliferation in the peritoneal cavity. Tumor-associated CD8+ T cells and NK cells also express more IFN-γ and TNF-α upon addition of the CTLA-4-blocking antibody. A kinetic analysis comparing early- and late-stage disease (14 days vs. 42 days after tumor cell inoculation) reveals that the immune response to DAC is early and transient,
but it can be sustained by the addition of α-CTLA-4. Specifically, the cytotoxic lymphocytes produce high levels of IFN-γ and TNF-α at day 14, with slightly higher cytokine production in DAC monotherapy than in the combination therapy at this early time point. In contrast, at the later time point, addition of α-CTLA-4 substantially augments cytokine production, prolonging the benefits of DAC treatment. Recent literature suggests that α-CTLA-4 enhances CD8+ T cell effector memory formation, function, and maintenance (49), which is consistent with our findings. Of note, the combination also enhances NK cell degranulation, which is a surrogate for direct cancer cell killing. The importance of NK cell and T cell crosstalk in the tumor microenvironment has been described recently (45). Specifically, the infiltration of both NK cells and CD8+ T cells into colorectal cancer is associated with prolonged patient survival.

In summary, the combination therapy achieves its antitumor efficacy by stimulating both innate and adaptive immunity, influencing lymphocyte infiltration, differentiation, cytokine production, and cytolysis. The results provide rationale for the clinical translation of a regimen combining epigenetic modifiers and immune checkpoint blockade and suggest that this combination may extend the survival of ovarian cancer patients.

Acknowledgments
We are grateful to Lina Wu (Peking University Cancer Hospital & Institute) for microarray data analysis and to Hye-Jung Kim and Jianmei Leavenworth for helpful discussions. This work was supported by the Ovarian Cancer Research Fund [Liz Tilberis Scholar]; Aid for Cancer Research; Kaleidoscope of Hope; and the Susan F. Smith Center for Women’s Cancer.
References

Figure Legends

Figure 1. DAC treatment activates expression of immunoregulatory genes. BR5FVB1-Akt ovarian cancer cells were treated with DAC for 72 h, and total RNA was collected for mouse gene ST 2.0 microarray analysis. A, a heat map of DMSO control and DAC using unpaired one-way ANOVA (p < 0.05). Two independent biological duplicates were evaluated, and the filter criteria is a linear fold change greater than 2. B, GO-Map analysis reveals that immunoregulatory genes constitute the greatest percentage of upregulated genes by category. C, KEGG pathway analysis reveals that many of the upregulated gene sets are components of cytokine, chemokine, and innate immune signaling pathways. D, real-time PCR analysis confirms that treatment of BR5FVB1-Akt cells with DAC for 72 h leads to upregulation of several immunoregulatory genes that can impact antitumor immunity.

Figure 2. DAC extends survival in a syngeneic orthotopic murine model of ovarian cancer. A, a schematic of the dosing schedule used for in vivo drug treatment. BR5FVB1-Akt cells were intraperitoneally injected into FVB mice, and DAC (1 mg/kg) was intraperitoneally administrated on days 4, 6, and 8 post-tumor inoculation. B, a Kaplan-Meier plot reveals that DAC extends the survival of FVB mice harboring syngeneic orthotopic ovarian tumors. At least 5 animals were used per group, and the experiment was performed independently three times. **p<0.01, versus control.

Figure 3. DAC treatment alters immune cell composition and enhances cytokine production in the peritoneal lavage. FVB mice were dosed according to the schema illustrated in Figure 2A. On day 14 post-tumor inoculation, a peritoneal wash was performed, and single-cell suspensions were analyzed by flow cytometry. A, representative figures of flow cytometric analyses of tumor-associated CD4+ T cells, CD8+ T cells, CD4+Foxp3+ Tregs, NK cells, and CD11b+Gr1+ MDSCs among control- and DAC-treated mice. B, quantitation of results from A with statistical analysis. C-D, cell suspensions from the peritoneal wash were stimulated with PMA and ionomycin for 4 h, and stimulated cells were then analyzed for expression of CD3, CD8, Nkp46, IFN-γ, and TNF-α by flow cytometry. C, representative results are shown for control- and DAC-treated cells. D, quantitation of results from C with statistical analysis. **p<0.005; ***p<0.0005; ****p<0.0001. Representative of three independent experiments.

Figure 4. Decitabine increases the frequency of tumor-infiltrating lymphocytes in subcutaneous tumors and tumor-draining lymph nodes. Tumor cells were implanted subcutaneously into FVB mice, which were dosed according to the schema illustrated in Figure 2A. A, a Kaplan-Meier plot reveals the survival benefit of DAC in the context of subcutaneous tumor inoculation. B-G, mice were sacrificed on day 35 post-tumor inoculation, and tumors and tumor-draining lymph nodes were isolated. B, tumor weight of subcutaneous tumors confirms the benefit of DAC treatment. C, representative figures of flow cytometric analyses of tumor infiltrating CD4+ T cells, CD8+ T cells, CD4+Foxp3+ Tregs, and NK cells among control- and DAC-treated mice. D, representative figures of flow cytometric analyses of CD8+ T cells and CD4+Foxp3+ Tregs in tumor-draining lymph nodes among control- and DAC-treated mice. E, quantitation of results from C with statistical analysis. F, quantitation of results from D with statistical analysis. G, CD8 and CD45 expression were analyzed by immunofluorescence of subcutaneous tumors isolated from mice treated with solvent control or DAC. Scale bar = 50 μm. Representative sections are
Figure 5. α-CTLA-4 synergizes with DAC to extend the survival of mice harboring syngeneic orthotopic ovarian tumors. A, dosing schedule of DAC and immune checkpoint blockade. BR5FVB1-Akt cells were injected intraperitoneally into FVB mice, and DAC (1 mg/kg) was administrated on days 4, 6, and 8 post-tumor inoculation. One hundred micrograms of α-CTLA-4 or isotype antibody was injected on days 5, 7, and 9. All drugs were administered via intraperitoneal injection. B, a Kaplan-Meier plot reveals, unlike either monotherapy, the combination of DAC+α-CTLA-4 dramatically improves survival. The experiment was concluded at day 90, which is twice the lifespan of mice treated with DAC monotherapy. At least 5 animals were used per group, and the experiment was performed independently three times. ****p<0.0001

Figure 6. Combining DAC with α-CTLA-4 promotes the development of effector T cells in the peritoneal cavities of tumor-bearing mice. The FVB mice were divided into two treatment groups (DAC+isotype control and DAC+α-CTLA-4), and cells isolated from their peritoneal cavities were analyzed on day 42 post-tumor cell inoculation. A, representative flow cytometry plots for effector, memory, and naïve CD8+ T cells. B, quantitation of results from A with statistical analysis. C, representative flow cytometry plots for effector, memory, and naïve CD4+ T cells. D, quantitation of results from C with statistical analysis. E, representative flow cytometry plots for Ki-67 (cell proliferation marker) in CD8+ and CD4+ T cells. F, quantitation of results from E with statistical analysis. G-L, cell suspensions from the peritoneal wash were stimulated with PMA and ionomycin for 4 h. α-CD107a was added during stimulation. The stimulated cells were analyzed for expression of CD3, CD8, Nkp46, CD107a, IFN-γ, and TNF-α by flow cytometry. G, representative flow cytometry plots for IFN-γ and TNF-α production in CD8+ T cells. H, quantitation of results from G with statistical analysis. I, representative flow cytometry plots for IFN-γ and TNF-α production in NK cells. J, quantitation of results from I with statistical analysis. K, representative flow cytometry plots for CD107a expression in NK cells. L, quantitation of results from K with statistical analysis.

Figure 7. Kinetics of IFN-γ and TNF-α production by CD8+ T cells and NK cells during disease progression. The FVB mice were divided into two treatment groups (DAC+isotype control and DAC+α-CTLA-4), and cells isolated from their peritoneal cavities were analyzed on days 14 and 42 post-tumor cell inoculation. Cell suspensions from the peritoneal wash were stimulated with PMA and ionomycin for 4 h. α-CD107a was added during stimulation. The stimulated cells were analyzed for expression of CD3, CD8, Nkp46, IFN-γ, and TNF-α by flow cytometry. A, IFN-γ production in CD8+ T cells. B, TNF-α production in CD8+ T cells. C, IFN-γ production in NK cells. D, TNF-α production in NK cells.
Figure 1

A

Control DAC

B

C

Up-Regulated Gene Sets KEGG pathway

<table>
<thead>
<tr>
<th>Term</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine-cytokine receptor interaction</td>
<td>Cxcl1, Inhba, Ccl2, Pdgfb, Tnfsf12a, Ccl5, Tnfsf18, Ccl7, Il1a, Cxcl10</td>
</tr>
<tr>
<td>Chemokine signaling pathway</td>
<td>Cxcl1, Ccl2, Ccl20, Ccl5, Ccl7, Cxcl10</td>
</tr>
<tr>
<td>Cytosolic DNA-sensing pathway</td>
<td>Ddx58, Irf7, Ccl5, Cxcl10</td>
</tr>
<tr>
<td>NOD-like receptor signaling pathway</td>
<td>Cxcl1, Ccl2, Ccl5, Ccl7</td>
</tr>
<tr>
<td>RIG-I-like receptor signaling pathway</td>
<td>Ddx58, Isg15, Irf7, Cxcl10</td>
</tr>
<tr>
<td>MAPK signaling pathway</td>
<td>Dusp4, Pdgfb, Flnb, Myc, Il1a</td>
</tr>
<tr>
<td>Toll-like receptor signaling pathway</td>
<td>Irf7, Ccl5, Cxcl10</td>
</tr>
</tbody>
</table>

D

mRNA relative expression (Fold increase)

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
A

DAC: day 4, 6, 8; 1 mg/kg; i.p.

BR5FVB1-Akt cells; day 0;
4 million/mouse; i.p. or
2 million/mouse; s.c.

B

Figure 2
Figure 3
Figure 4
Figure 5

A

αCTLA-4: day 5, 7, 9; 100 μg/mouse; i.p.

DAC: day 4, 6, 8; 1 mg/kg; i.p.

BR5FVB1-Akt cells; day 0; 4 million/mouse; i.p.

B

Percent survival

Days

--- DMSO+isotype

DMSO+αCTLA-4

--- DAC+isotype

DAC+αCTLA-4

Figure 6
Figure 7
Decitabine enhances lymphocyte migration and function and synergizes with CTLA-4 blockade in a murine ovarian cancer model

Lei Wang, Zohreh Amoozgar, Jing Huang, et al.

Cancer Immunol Res Published OnlineFirst June 8, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/2326-6066.CIR-15-0073

Supplementary Material Access the most recent supplemental material at: http://cancerimmunolres.aacrjournals.org/content/suppl/2015/06/06/2326-6066.CIR-15-0073.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.