Large-Scale Evaluation of Common Variation in Regulatory T Cell-Related Genes and Ovarian Cancer Outcome

Bridget Charbonneau\(^1\), Kirsten B. Moysich\(^2\), Kimberly R. Kalli\(^3\), Ann L. Oberg\(^4\), Robert A. Vierkant\(^4\), Zachary C. Fogarty\(^4\), Matthew S. Block\(^5\), Matthew J. Maurer\(^4\), Krista M. Goergen\(^4\), Brooke L. Fridley\(^5\), Julie M. Cunningham\(^6\), David N. Rider\(^4\), Claudia Preston\(^7\), Lynn C. Hartmann \(^8\), Kate Lawrenson\(^9\), Chen Wang\(^4\), Jonathan Tyrer\(^10\), Honglin Song\(^10\), Anna deFazio\(^11\), Sharon E. Johnatty\(^12\), Jennifer A. Doherty\(^13\), Catherine M. Phelan\(^14\), Thomas A. Sellers\(^14\), Starr M. Ramirez\(^1\), Allison F. Vitonis\(^15\), Kathryn L. Terry\(^15,16\), David Van Den Berg\(^9\), Malcolm C. Pike\(^9,17\), Anna H. Wu\(^9\), Andrew Berchuck\(^18\), Aleksandra Gentry-Maharaj\(^19\), Susan J. Ramus\(^9\), Brenda Diergaarde\(^20\), Howard Shen\(^9\), Allan Jensen\(^21\), Janusz Menkiszak\(^22\), Cezary Cybulski\(^23\), Argyrios Ziogas\(^24\), Joseph H. Rothstein\(^25\), Valerie McGuire\(^25\), Weiva Sieh\(^25\), Jenny Lester\(^26\), Christine Walsh\(^26\), Ignace Vergote\(^27\), Sandrina Lambrechts\(^27\), Evelyn Despierre\(^27\), Montserrat Garcia-Closas\(^28\), Hannah Yang\(^29\), Louise A. Brinton\(^29\), Beata Spiewankiewicz\(^30\), Iwona K. Rzepecka\(^31\), Agnieszka Dansonka-Mieszkowska\(^31\), Petra Seibold\(^32\), Anja Rudolph\(^32\), Lisa E. Paddock\(^33\), Irene Orlov\(^17\), Lene Lundvall\(^34\), Sara H. Olson\(^17\), Claus K. Hodgall\(^34\), Ira Schwab\(^35\), Andreas du Bois\(^36,37\), Philipp Harter\(^36,37\), James M. Flanagan\(^38\), Robert Brown\(^38\), James Paul\(^39\), Arif B. Ekici\(^40\), Matthias W. Beckmann\(^41\), Alexander Hein\(^41\), Diana Eccles\(^42\), Galina Lurie\(^43\), Laura E. Hays\(^44\), Yukie T. Bear\(^45,46\), Tanja Pejovic\(^45,46\), Marc T. Goodman\(^47\), Ian Campbell\(^48,49\), Peter A. Fasching\(^41,50\), Gottfried Konecny\(^50\), Stanley B. Kaye\(^51\), Florian Heitz\(^36,37\), Estrid Hodgall\(^21,52\), Elisa V. Bandera\(^53\), Jenny Chang-Claude\(^32\), Jolanta Kupryjanczyk\(^31\), Nicolas Wentzensen\(^29\), Diether Lambrechts\(^54,55\), Beth Y. Karlan\(^26\), Alice S. Whittemore\(^25\), Hoda Anton Culver\(^24\), Jacek Gronwald\(^23\), Douglas A. Levine\(^56\), Susanne K. Kjaer\(^21,34\), Usha Menon\(^19\), Joellen M. Schildkraut\(^57,58\), Celeste Leigh Pearce\(^9\), Daniel W. Cramer\(^15,16\), Mary Anne Rossing\(^59,60\), Georgia Chenevix-Trench\(^12\) for AOCS group \(^1\), Paul D.P. Pharoah\(^10,61\), Simon A. Gayther\(^9\), Roberta B. Ness\(^82\), Kunle Odunsi\(^2\), Lara E. Sucheston\(^2\), Keith L. Knutson\(^7,63^*\), and Ellen L. Goode\(^1^*\)

1. Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA.
2. Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA.
3. Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
4. Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
5. Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA.
6. Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN, USA.
7. Department of Immunology, Mayo Clinic, Rochester, MN, USA.
8. Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA.
9. Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
10. Department of Oncology, University of Cambridge, Cambridge, UK.
11. Department of Gynaecological Oncology, Westmead Hospital and Westmead Institute for Cancer Research, University of Sydney at the Westmead Millennium Institute, Westmead, Australia.
12. Cancer Division, Queensland Institute of Medical Research, Herston, QLD, Australia.
13. Section of Biostatistics and Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
14. Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa, FL, USA.
15. Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
16. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
17. Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
18. Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
20. Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
21. Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.
22. Department of Surgical Gynecology and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland.
23. International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.
24. Department of Epidemiology, Center for Cancer Genetics Research and Prevention, School of Medicine, University of California Irvine, Irvine, CA, USA.
25. Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Palo Alto, CA, USA.
26. Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
27. Division of Gynecologic Oncology, Department of Obstetrics and Gynecology and Leuven Cancer Institute, University Hospitals Leuven, Belgium.
29. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
30. Department of Gynecologic Oncology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
31. Department of Pathology, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
32. German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany.
33. New Jersey Department of Health, Trenton, NJ, USA.
34. Department of Gynaecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
35. Institut für Humangenetik Wiesbaden, Wiesbaden, Germany.
36. Department of Gynecology and Gynecologic Oncology, Dr. Horst Schmidt Kliniken Wiesbaden, Wiesbaden, Germany.
38. Department of Surgery and Cancer, Imperial College London, London, UK.
39. The Beatson West of Scotland Cancer Centre, Glasgow, UK.
40. Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
41. University Hospital Erlangen, Department of Gynecology and Obstetrics, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center, Erlangen, Germany.
42. Faculty of Medicine, University of Southampton, University Hospital Southampton, UK.
43. Cancer Epidemiology Program, University of Hawaii Cancer Center, HI, USA.
44. Department of Hematology and Oncology and the Knight Cancer Institute, Portland, OR, USA.
45. Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA.
46. Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
47. Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
48. Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
49. Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.
50. Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
51. Division of Clinical Studies, The Institute of Cancer Research and the Royal Marsden Hospital, Sutton, UK.
52. Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark.
53. Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
54. Vesalius Research Center, VIB, Leuven, Belgium.
55. Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium.
56. Gynecology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
57. Cancer Prevention, Detection and Control Research Program, Duke Cancer Institute, Durham, NC, USA.
58. Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA.
59. Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
60. Department of Epidemiology, University of Washington, Seattle, WA, USA.
61. Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
62. The University of Texas School of Public Health, Houston, TX, USA.
63. The Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, FL, USA.
*These authors contributed equally to this work

Address correspondence to:
Ellen L. Goode, Ph.D., M.P.H.
Department of Health Sciences Research
Mayo Clinic
200 First Street SW
Rochester, MN 55905, USA
Phone 507/266-7997; Fax 507/266-2478
Email egoode@mayo.edu
Running title: Treg SNPs and ovarian cancer survival
Key words: clear cell, endometrioid, gynecologic neoplasms, single nucleotide polymorphism

Conflict of interest: B Charbonneau was an employee of Mayo Clinic at the time this manuscript was drafted and is currently an employee of and owns stock in Eli Lilly and Company.

Word Count: 2453

Abstract Word Count: 247

Number of Figures: 3

Number of Tables: 1

Number of Supplementary Tables: 4
Abstract

The presence of regulatory T cells (Tregs) in solid tumors is known to play a role in patient survival in ovarian cancer and other malignancies. We assessed inherited genetic variations via 749 tag SNPs in 25 Treg-associated genes (CD28, CTLA4, FOXP3, IDO1, IL10, IL10RA, IL15, IL17RA, IL23A, IL23R, IL2RA, IL6, IL6R, IL8, LGALS1, LGALS9, MAP3K8, STAT5A, STAT5B, TGFB1, TGFB2, TGFB3, TGFBRI, TGRBR2, and TGFBR3) in relation to ovarian cancer survival. We analyzed genotype and overall survival in 10,084 women with invasive epithelial ovarian cancer, including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous carcinoma cases of European descent across 28 studies from the Ovarian Cancer Association Consortium (OCAC). The strongest associations were found for endometrioid carcinoma and IL2RA SNPs rs11256497 [HR=1.42, 95% CI: 1.22-1.64; p=5.7 x 10^{-6}], rs791587 [HR=1.36, 95% CI:1.17-1.57; p=6.2 x 10^{-5}], rs2476491 [HR=1.40, 95% CI: 1.19-1.64; p=5.6 x 10^{-5}], and rs10795763 [HR=1.35, 95% CI: 1.17-1.57; p=7.9 x 10^{-5}], and for clear cell carcinoma and CTLA4 SNP rs231775 [HR=0.67, 95% CI: 0.54-0.82; p=9.3 x 10^{-5}] after adjustment for age, study site, population stratification, stage, grade, and oral contraceptive use. The rs231775 allele associated with improved survival in our study also results in an amino acid change in CTLA4 and previously has been reported to be associated with autoimmune conditions. Thus, we found evidence that SNPs in genes related to Tregs appear to play a role in ovarian cancer survival, particularly in patients with clear cell and endometrioid EOC.
Introduction

There were an estimated 15,500 deaths from ovarian cancer in the United States in 2012 (1) in part because many tumors are diagnosed at late stage and recurrences are common. Invasive epithelial ovarian cancer (EOC) consists of several histological subtypes with varying behavior and survival (2), and the rare subtypes are often understudied because of limited numbers. Nonetheless, subtype-specific analysis of EOC is needed to better understand prognostic factors. By combining cases across many studies in the Ovarian Cancer Association Consortium (OCAC), these subtype analyses may now be conducted.

Antitumor immunity by cytotoxic T cells has been demonstrated in ovarian cancer (1) and recent meta-analyses concluded that tumor-infiltrating immune cells predict improved survival in EOC (2) and other malignancies (3). However, in the tumor microenvironment, the function of these cells is often suppressed by a mixture of suppressive cytokines produced by the tumor and by the different populations of suppressive immune cells (4). Of particular interest are regulatory T cells (Tregs), which develop in the thymus (natural) or periphery (acquired) and typically express CD4 and FOXP3 (5). These cells interact with antigen presenting cells (APCs) via cell surface molecules, such as CTLA4, to inhibit antigen presentation and to induce APCs to express suppressive cytokines (6). Their presence in tumors has been linked to poor prognosis in EOC patients (7).

Based on this knowledge, we hypothesized that genetic variants in genes activated in suppressive immune cells may associate with EOC survival. Previously,
assessment of polymorphisms in 54 genes in the regulatory T cell pathway in 994 EOC cases pooled from two sites found associations between SNPs in RGS1 (clear cell EOC), LRRC32 and TNFRSF4/TNFRSF18 (mucinous EOC), and CD80 (endometrioid and all EOC) and EOC survival (8). In this study, we have expanded the scope to include polymorphisms in additional Treg-related genes in a much larger pooled analysis of 10,084 invasive EOC cases from 28 studies, allowing subtype-specific analyses.
Materials and Methods

SNP Selection. Minor allele frequency (MAF) was defined as the relative frequency of the SNP minor allele in the population. Linkage disequilibrium (LD, defined as the occurrence of paired alleles in a population relative to that expected from random formation of haplotypes) r^2 values were calculated for all pairs of SNPs. Twenty-five genes of relevance to the biology of Tregs ($CD28$, $CTLA4$, $FOXP3$, $IDO1$, $IL10$, $IL10RA$, $IL1$, $1L17RA$, $IL23A$, $IL23R$, $IL2RA$, $IL6$, $IL6R$, $IL8$, $LGALS1$, $LGALS9$, $MAP3K8$, $STAT5A$, $STAT5B$, $TGFBR1$, $TGFBR2$, and $TGFBR3$) were chosen for this study (Supplemental Table 1). The relevance of these genes was established from a PubMed database search which revealed published information that either directly showed or suggested a role for the respective gene products in the induction, immune suppressive function, or trafficking of Tregs (8). We selected 749 SNPs in these genes, including 5 kb upstream and downstream, in attempt to tag all common variants using the criteria that all known SNPs with MAF ≥ 0.05 had an $r^2 \geq 0.8$ with at least one tag SNP in the region. Additional SNP information is presented in Supplemental Table 2.

Study Participants, Genotyping, and Quality Control. A total of 10,084 invasive EOC cases, of which 5,248 were high-grade serous cases, were examined. Germline DNA (250 ng genomic or 750 ng whole-genome amplified) from participants from 28 studies (Supplemental Table 3) in the OCAC was genotyped on a custom Illumina iSelect BeadArray, using centralized genotype calling and quality control (QC) procedures, as described previously (9-13). In brief, we excluded samples with call rate < 95% and SNPs with call rate < 95% (MAF ≥ 0.05) or < 99% (MAF < 0.05); we
restricted to samples with > 90% predicted European ancestry, and we estimated principal components (PCs) representing European substructure (9). Additional exclusions are described in White et al (11).

In Silico Analysis. Several publically available *in silico* tools were accessed to determine if there was any published information related to the identified SNPs, including RegulomeDB, PolyDoms and the Ensembl Variation. Analysis was carried out on all SNPs that reached a statistical significance of p<0.001. RegulomeDB annotates SNPs with known and predicted regulatory elements in the intergenic and non-coding regions of the *H. sapiens* genome. Known and predicted regulatory DNA elements include regions of DNAase hypersensitivity, binding sites of transcription factors, and promoter regions that have been biochemically characterized to regulate transcription (14). PolyDoms predicts the implications of the non-synonymous SNPs (nsSNPs) using two well-known algorithms (SIFT and PolyPhen). The results are presented onto protein domains and highlight those nsSNPs that are potentially deleterious or have been reported as disease allelic variants (15).

Ensemble Variation (http://useast.ensembl.org/info/genome/variation/index.html) is a database that stores areas of the genome that differ between individual genomes and, if available, stores associated disease and phenotype information for SNPs as well as short nucleotide insertions and/or deletions and longer variants.

Statistical Analysis. Cox proportional hazards regression modeling was used to estimate per-allele hazard ratios (HRs) and 95% confidence intervals (CIs) for associations with overall survival (OS). Separate analyses were carried out for all cases combined as well as for each of the four major histologic subtypes (high-grade
serous, endometrioid, clear cell, and mucinous), accounting for left truncation and right censoring. Relevant adjustment covariates included lifestyle and clinical variables found to be independently associated with overall survival in all ovarian cancer cases with available data (Supplemental Table 4). Two different Cox models were created to adjust for relevant covariates: a minimally adjusted Cox model adjusted for age at diagnosis, the first five population substructure PCs, and study site; and a Cox model adjusted additionally for histology (for analyses of all cases only), tumor stage summarized from FIGO or SEER stage (localized, regional, distant, unknown), tumor grade (well, moderately, poorly, or undifferentiated, unknown), and oral contraceptive use (yes, no, unknown). The interaction between each SNP and study sites was examined using likelihood ratio testing to identify heterogeneity of HRs across study sites. SNP associations with overall survival were visually displayed using Kaplan-Meier curves, again accounting for left truncation of data. A Bonferroni-corrected p-value (6.2x10^-4) was calculated accounting for LD between SNPs. Accounting for LD was done by determining the number of independent bins (N=81), where each bin contained one or more tagSNPs with $r^2 \geq 0.1$ with all other SNPs in the same bin. For the most statistically significant SNPs, we additionally attempted to account for residual disease following surgery by running sensitivity analyses in cases with non-missing information on tumor debulking status (2,470 total EOC cases, 326 endometrioid EOC cases and 171 clear cell EOC), where we compared unadjusted SNP associations with OS to those adjusted for two-category debulking status (no residual disease versus other). We also utilized HaploReg v2 (http://www.broadinstitute.org/mammals/haploreg/haploreg.php) to identify specific
information on potential SNP function for the most statistically significant SNPs (16). Gene expression data were obtained for 200 samples (including 154 serous, 35 endometrioid, 5 clear cell, 5 mucinous) with matching gene expression and genotype data for rs11256497 and analyzed as described previously (8). Briefly, data were normalized via the Agilent error model and log ratios of signal relative to a reference were used for analyses. After normalization, batch differences caused by Cy5 (case channel) and Cy3 (reference channel) dying dates were adjusted using ComBat, an empirical Bayesian approach (17). Association of rs11256497 genotype with gene expression within the IL2RA gene (cis relationship) was assessed by comparing mean log10 transformed normalized gene expression values of GG versus AG/AA genotypes using a two-tailed unpaired t test.
Results

In 10,084 EOC cases (including 5,248 high-grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous) pooled from 28 studies, we assessed 749 SNPs in 25 Treg-related genes for associations with overall survival (OS). The median survival time across the 28 studies included in this analysis ranged from 2.2-8.6 years (Supplemental Table 3).

Associations between Treg SNPs and survival among all cases with EOC and by specific tumor histologies

Table 1 includes all SNPs associated at p<0.005 with overall survival (OS) for all EOC cases and by histologic subtype, following adjustment for other prognostic factors. One SNP in TGFBR2 and 10 SNPs in IL2RA were associated with OS in endometrioid EOC at p<0.005, with six IL2RA SNPs statistically significantly associated with OS at p<6.2x10⁻⁴, including rs11256497 (HR=1.42, 95% CI 1.22-1.64) (Figure 1A), rs791587 (HR=1.36, 95% CI 1.17-1.57), rs2476491(HR=1.40, 95% CI 1.19-1.64), rs10795763 (HR=1.35, 95% CI 1.17-1.57), rs2256774 (HR=1.33, 95% CI 1.14-1.56), and rs10905669 (HR=0.71, 95% CI 0.59-0.85). P-values for IL2RA SNPs are plotted in Figure 2A along with linkage disequilibrium (LD) with the most strongly associated SNP rs11256497. We observed a moderate amount of LD between rs11256497 and the other highlighted SNPs, with r² values ranging between 0.4 and 0.8. The CTLA4 SNP rs231775 was associated with OS in clear cell EOC (HR=0.67, 95% CI 0.54-0.82) (Figure 1B) at p<6.2x10⁻⁴. Other SNPs in this gene were not statistically significantly associated with clear cell EOC (Figure 2B); there was a modest association with two
MAP3K8 SNPs. Three of the TGFBR2 SNPs were also modestly associated (p<0.0005) with OS in patients with high-grade serous EOC, but only rs6770038 (HR=0.88, 95% CI 0.82-0.94) met the threshold for statistical significance. Modest associations were also seen between one TGFBR2 and four TGFBR3 SNPs and OS in mucinous EOC. One IL10RA and four TGFBR2 SNPs had suggestive associations with OS in all EOC, but only the association with rs4522809 was statistically significant (HR=1.08, 95% CI 1.03-1.12). Results were generally similar for the minimally adjusted model (data not shown). While we were limited in the number of cases with non-missing debulking status (2,470 total EOC cases, including 326 endometrioid EOC cases and 171 clear cell EOC), we carried out sensitivity analyses for the most statistically significant SNPs and found the estimates did not change substantially between unadjusted and debulking status-adjusted analyses of cases with non-missing debulking status (data not shown).

Correlations between germline polymorphisms in IL2RA and gene expression in the tumor

The most statistically significant association was found between the OS of endometrioid EOC and rs11256497 in IL2RA. To determine the functional consequences of this intronic variant, we investigated whether the expression of IL2RA in tumors varied by allele in 200 tumors of combined histology with matching genotype and gene expression data available for analysis. There was no evidence for differences in tumor IL2RA mRNA expression by IL2RA SNP rs11256497 (GG vs AA/AG; p=0.33 for probe A_23_P237288 and p=0.23 for probe A_24_P230563) in these tumors of
combined histolog. However, when we restricted the analysis to endometrioid histology,
IL2RA expression was lower in the AG/AA group, compared to the GG group (p=0.001 for probe A_23_P237288 and p=0.01 for probe A_24_P230563; Figure 3).

Lastly, using *in silico* tools, we determined whether there was information regarding the role of the SNPs in regulating the function and/or expression of the genes with which they are associated. First, we accessed RegulomeDB to determine if any of the intronic SNPs with a p < 0.001 (Table 1 bolded) may be associated with regions involved in the regulation of expression. This included all of the identified SNPs with the exception of rs231775, a coding SNP. The only SNP that was in a region for which binding of regulatory elements was considered likely was rs11256497 within the *IL2RA* gene, which is in agreement with the expression results depicted in Figure 3. While dbSNP did not provide additional information with respect to this SNP, using this tool we found two other *IL2RA* SNPs, rs10905669 and rs10795763, within 2.5 kb of the promoter regions suggesting a role for these SNPs in regulating expression. The only SNP relevant to the PolyDom algorithm (i.e., within a coding region) was the *CTLA4* missense SNP rs231775 which was predicted to be a benign variant.
Discussion

Infiltration of ovarian tumors by Tregs is associated with poor patient outcome (7). Previously, we found associations between overall survival in EOC and SNPs in genes related to Treg activation, migration, and function, including \textit{RGS1} (clear cell), \textit{LRRC32} and \textit{TNFRSF18/TNFRSF4} (mucinous), and \textit{CD80} (endometrioid) (8). In the present study, we assessed the associations between overall survival in EOC patients and germline variations in additional Treg-related genes. The most notable associations (p<6.2x10^{-4}) were found between six SNPs in \textit{IL2RA} and OS in women with endometrioid cancer, a \textit{CTLA4} SNP and OS in women with clear cell carcinoma, a \textit{TGFBR2} SNP and OS in women with high-grade serous EOC, and a \textit{TGFBR2} SNP and OS in women with any EOC. There were also a few modest associations between OS and Treg-related SNPs in \textit{TGFBR2} and \textit{IL10RA} for all EOC, \textit{TGFBR2} for high-grade serous, \textit{TGFBR2} for endometrioid, \textit{MAP3K8} for clear cell, and \textit{TGFBR2} and \textit{TGFBR3} for patients with mucinous EOC.

The most statistically significant association found was between overall survival in women with endometrioid EOC and \textit{IL2RA} SNP, rs11256497. \textit{IL}-2\textsubscript{R}α, also known as CD25, forms a portion of the high affinity IL-2 receptor, is expressed by most Tregs. IL-2 signaling through this receptor plays an important role in Treg homeostasis (18). IL-2 treatment has been shown to enhance Treg numbers and function (19), while anti-CD25 antibodies can be used to deplete Tregs (20). The rs11256497 SNP, associated with OS in our study, is located in an NF-κB and EBF1 binding site (HaploReg v2) (described in (16) and is predicted to impact binding by RegulomeDB), but the effect of this SNP on transcription factor binding is unknown. Analysis of endometrioid (N=35 EOC) tumors
with matching tumor mRNA expression and rs11256497 genotype data revealed elevated IL2RA mRNA expression in the tumors of patients with the GG genotype, which was also associated with improved survival, compared to patients with the AA/AG genotype. This finding seems counterintuitive, as higher IL2RA would be predicted to associate with higher Treg counts and therefore reduced survival; however, prior studies have identified the complexity of IL-2/IL-2Rα signaling and its importance in effector T cell response (21). We also note that sample size was limited for endometrioid cases with overlapping genotype and gene expression data. These data also do not permit an evaluation of whether or not these SNPs alter expression in specific cell types such as regulatory T or other immune cells. Future studies are needed to explore whether this variant affects regulatory T cell maintenance and associates with infiltrating Tregs in the tumor.

The minor (G) allele of the CTLA4 SNP rs231775 is associated with increased risk of systemic lupus erythematosus, primary biliary cirrhosis, and type 1 diabetes (22-24). The increased risk associated with these autoimmune diseases, suggests that this SNP reduces CTLA4 function, thereby increasing effector T cell response against self-antigens. Therefore, it is plausible that this missense (Thr>Ala) SNP would be associated with improved EOC survival as presented in our study, as it may relate to enhanced effector T cell response to tumors. In a prior study assessing the function of this variant, T-cells from individuals with the GG genotype had increased proliferation with suboptimal stimulation, lower CTLA4 expression following activation, and different intracellular distribution of CTLA4 than T-cells from individuals with the AA genotype (25). Ipilimumab, an anti-CTLA4 monoclonal antibody, has been used with some
success in inducing tumor regression of melanoma and renal clear cell carcinoma (26). Recent studies in rodent models have demonstrated that treatment with anti-CTLA4 antibodies results in enhanced tumor rejection and higher intratumoral ratio of effector T cell/Treg (27, 28). While further experimental studies should be carried out to evaluate how this genetic association translates into clinical application, our findings combined with that in the previous reports of clear cell EOC being molecularly similar to renal clear cell carcinoma (29), indicate that blocking CTLA4 with an agent such as ipilimumab might be reasonable to investigate in clinical trials for clear cell EOC. A phase II study of this drug currently is underway in recurrent platinum-sensitive ovarian cancer (www.clinicaltrials.gov).

The strengths of this study include centralized QC and large sample size, thus providing the opportunity to examine associations between survival and SNPs with more modest effects in patients with the common high-grade serous histology and those with the rare histologic subtypes. Our study include samples from 28 EOC studies with different designs and goals, and we controlled for potentially confounding factors by adjusting for study site and several clinical covariates for which information was available in a large portion of the OCAC population. While we were limited by the number of cases with non-missing debulking status and therefore did not perform this adjustment in our primary analysis, we did perform sensitivity analyses in cases with non-missing debulking status. We used a fairly comprehensive approach (SNP-tagging) to identify variations in Treg-related genes; however, due to QC failures, some genes were not as well-covered as others. Differences in enrollment time, particularly for population-based studies with delayed enrollment, may also affect the results due to
a failure to enroll subjects, who died very soon after diagnosis. While adjustment for left truncation removes some of the biases, an increased survival time was still evident. Finally, due to variation in racial differences in allele frequencies and the limited number of racial minorities, the analysis was restricted to participants of European descent, which reduces generalizability.

In conclusion, we provide evidence that Treg-related SNPs are associated with survival in subtypes of EOC. In particular, several SNPs in *IL2RA* are associated with survival in endometrioid EOC. We found that the minor allele of a missense *CTLA4* SNP, previously reported to be associated with impaired CTLA4 function and several autoimmune disorders, is associated with improved survival in clear cell EOC. This finding may have important clinical implications, as anti-CTLA4 therapy has already been used with some success in the treatment of melanoma and renal clear cell carcinoma. Further research on the effects of inhibiting CTLA4 in clear cell EOC is warranted.
Acknowledgements

We thank all the individuals who took part in this study and all the researchers, clinicians and technical and administrative staff who have made possible the many studies contributing to this work. In particular, we thank: D. Bowtell, A. deFazio, D. Gertig, A. Green, P. Parsons, N. Hayward, P. Webb and D. Whiteman (AUS); G. Peuteman, T. Van Brussel and D. Smeets (BEL); U. Eilber and T. Koehler (GER); G.S. Keeney (MAY); A. Samoila Y. Bensman, L. Rodriguez, M. King, U. Chandran, D. Gifkins, and T. Puvananayagam (NJO); M. Sherman, A. Hutchinson, N. Szeszeniadabrowska, B. Peplonska, W. Zatonski, A. Soni, P. Chao and M. Stagner (POL); C. Luccarini, P. Harrington, the SEARCH team, and ECRIC (SEA); the Scottish Gynaecological Clinical Trails group and SCOTROC1 investigators (SRO); I. Jacobs, M. Widschwendter, E. Wozniak, N. Balogun, A. Ryan and J. Ford (UKO); C. Pye (UKR); A. Amin Al Olama, K. Michilaidou, and K. Kuchenbäker (COGS). The Australian Ovarian Cancer Study (AOCS) Management Group (D Bowtell, G. Chenevix-Trench, A. deFazio, D. Gertig, A. Green, and P.M. Webb) gratefully acknowledges the contribution of all the clinical and scientific collaborators (see http://www.aocstudy.org/). The Australian Cancer Study (ACS) Management Group comprises A. Green, P. Parsons, N. Hayward, P.M. Webb, and D. Whiteman.

The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the Genetic Associations and Mechanisms in Oncology (GAME-ON): a NCI Cancer Post-GWAS Initiative (U19-CA148112). G.C.-T.
and P.M.W. are supported by the National Health and Medical Research Council. B.K. holds an American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN). B.C. was supported by R25 CA92049.

Funding of the constituent OCAC studies was provided by the American Cancer Society (CRTG-00-196-01-CCE); the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes for Health Research; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124, C536/A13086, C536/A6689); the Celma Mastry Ovarian Cancer Foundation; the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; The Eve Appeal (Oak Foundation); the Helsinki University Central Hospital Research Fund; Helse Vest; Imperial Experimental Cancer Research Centre (C1312/A15589); the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education; the US National Cancer Institute (K07-CA095666, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P20-GM103418, P30-CA072720, P30-CA15083, P30-CA168524, P50-CA105009, P50-CA136393, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063682, R01-CA064277, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA076016, R01-CA080742, R01-
CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-095023, R01-CA106414, R01-CA122443, R01-CA61107, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R01-CA149429, R03-CA113148, R03-CA115195, R21-GM86689, R37-CA070867, R37-CA70867, U01-CA069417, U01-CA071966 and Intramural research funds); the US Army Medical Research and Material Command (DAMD17-98-1-8659, DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-10-1-0280); the National Health and Medical Research Council of Australia (199600 , 400413, and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01 GB 9401); the state of Baden-Württemberg through Medical Faculty of the University of Ulm (P.685); the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Polish Committee for Scientific Research (4P05C 028 14 and 2P05A 068 27); the Oak Foundation; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital “Womens Health Theme” and the Royal Marsden Hospital; and WorkSafeBC.

This study would not have been possible without the contributions of the following: Per Hall (COGS); Douglas F. Easton (BCAC), Rosalind A. Eeles, Douglas F. Easton, Ali Amin Al Olama, Zsofia Kote-Jarai (PRACTICAL), Georgia Chenevix-Trench, Antonis Antoniou, Fergus Couch and Ken Offit (CIMBA), Joe Dennis, Alison M. Dunning, Andrew Lee, and Ed Dicks (University of Cambridge), Javier Benitez, Anna Gonzalez-Neira and the staff of the CNIO genotyping unit, Jacques Simard and Daniel
C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Stig E. Bojesen, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (R01-CA128978) and its Post-Cancer GWAS initiative (No. 1 U19-CA148537 - the GAME-ON initiative), the Department of Defense (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, and the Breast Cancer Research Foundation.
References

Figure Legends

Figure 1: Kaplan–Meier curves accounting for left-truncation for the most statistically significantly associated SNPs and overall survival in women with (A) endometrioid EOC with rs11256497 genotype [GG(N=582), AG(N=670), and AA(N=200)]; (B) clear cell EOC with rs231775 genotype [AA(N=313), AG(N=379), and GG(N=103)]; (C) high-grade serous EOC with rs6770038 genotype [GG(N=3,484), AG(N=1,604), and AA(N=160)]; (D) mucinous EOC with rs4658265 genotype [GG(N=305), AG(N=295), and AA(N=61)]; and (E) any invasive EOC with rs4522809 genotype [AA(N=2,782), AG(N=5,069), and GG(N=2,232)].

Figure 2: SNPs most statistically significantly associated with overall survival in endometrioid and clear cell EOC. Association p-values (-log10(p-value)) using LocusZoom (30) of all SNPs in (A) **IL2RA** for endometrioid (rs11256497 represented by purple circle), (B) **CTLA4** for clear cell (rs231775 represented by purple triangle), (C) **TGFBR2** for high-grade serous (rs6770038 represented by purple circle), (D) **TGFBR3** for mucinous (rs4658265 represented by purple circle), and (E) **TGFBR2** for all invasive EOC (rs4522809 represented by purple circle). Annotation key: ▲ - framestop or splice; ▼ - NonSynonymous; ■ - Synonymous or UTR; ● – no; x - conserved in placental mammals
Figure 3: *IL2RA* mRNA expression (normalized and log10 transformed) by rs11256497 genotype in endometrioid EOC tumors. Two different Agilent *IL2RA* probes are presented A) A_23_P237288 and B) A_24_P230563. Two-tailed, unpaired t test p-value is reported.
Table 1. SNPs in regulatory T cell genes and association with overall survival in ovarian cancer (p<0.005)

<table>
<thead>
<tr>
<th>Case Group</th>
<th>Gene</th>
<th>SNP</th>
<th>Alleles</th>
<th>MAF</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (N=10,084)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TGFBR2</td>
<td>rs6550005 G>A</td>
<td>0.20</td>
<td>0.92</td>
<td>(0.88-0.97)</td>
<td>3.3 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs6770938 G>A</td>
<td>0.18</td>
<td>0.92</td>
<td>(0.87-0.97)</td>
<td>1.7 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs4522809 A>G</td>
<td>0.47</td>
<td>1.08</td>
<td>(1.03-1.12)</td>
<td>3.7 x 10^-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs9843942 G>A</td>
<td>0.37</td>
<td>1.07</td>
<td>(1.02-1.12)</td>
<td>2.5 x 10^-3</td>
</tr>
<tr>
<td></td>
<td>IL10RA</td>
<td>rs4252314 A>G</td>
<td>0.04</td>
<td>0.85</td>
<td>(0.76-0.95)</td>
<td>4.1 x 10^-3</td>
</tr>
<tr>
<td>High-grade serous (N=5,248)</td>
<td>TGFBR2</td>
<td>rs6550005 G>A</td>
<td>0.20</td>
<td>0.91</td>
<td>(0.85-0.97)</td>
<td>4.6 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs6770938 G>A</td>
<td>0.18</td>
<td>0.88</td>
<td>(0.82-0.94)</td>
<td>3.2 x 10^-4</td>
</tr>
<tr>
<td>Endometrioid (N=1,452)</td>
<td></td>
<td>TGFBR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs12495646 C>A</td>
<td>0.32</td>
<td>0.79</td>
<td>(0.67-0.93)</td>
<td>4.6 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs7072398 G>A</td>
<td>0.44</td>
<td>1.27</td>
<td>(1.10-1.47)</td>
<td>1.2 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs6602398 C>A</td>
<td>0.30</td>
<td>1.30</td>
<td>(1.11-1.52)</td>
<td>1.6 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs11256497 G>A</td>
<td>0.37</td>
<td>1.42</td>
<td>(1.22-1.64)</td>
<td>5.7 x 10^-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs791587 G>A</td>
<td>0.46</td>
<td>1.36</td>
<td>(1.17-1.57)</td>
<td>6.2 x 10^-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs10905669 G>A</td>
<td>0.24</td>
<td>0.71</td>
<td>(0.59-0.85)</td>
<td>2.2 x 10^-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs2476491 A>T</td>
<td>0.29</td>
<td>1.40</td>
<td>(1.19-1.64)</td>
<td>5.6 x 10^-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs2245675 G>A</td>
<td>0.32</td>
<td>1.31</td>
<td>(1.13-1.53)</td>
<td>6.2 x 10^-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs10795763 A>C</td>
<td>0.40</td>
<td>1.35</td>
<td>(1.17-1.57)</td>
<td>7.9 x 10^-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs2256774 A>G</td>
<td>0.34</td>
<td>1.33</td>
<td>(1.14-1.56)</td>
<td>2.9 x 10^-4</td>
</tr>
<tr>
<td>Clear cell (N=795)</td>
<td></td>
<td>CTLA4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs231775 A>G</td>
<td>0.37</td>
<td>0.67</td>
<td>(0.54-0.82)</td>
<td>9.3 x 10^-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs306588 A>G</td>
<td>0.31</td>
<td>1.33</td>
<td>(1.10-1.61)</td>
<td>4.1 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs202162340 A>C</td>
<td>0.37</td>
<td>1.32</td>
<td>(1.09-1.59)</td>
<td>4.7 x 10^-3</td>
</tr>
<tr>
<td>Mucinous (N=661)</td>
<td></td>
<td>TGFBR3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs284172 T>A</td>
<td>0.14</td>
<td>0.60</td>
<td>(0.42-0.86)</td>
<td>3.0 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs12129174 G>A</td>
<td>0.16</td>
<td>1.61</td>
<td>(1.18-2.19)</td>
<td>3.8 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs4658265 G>A</td>
<td>0.32</td>
<td>1.56</td>
<td>(1.20-2.05)</td>
<td>1.2 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs5019497 C>A</td>
<td>0.43</td>
<td>0.68</td>
<td>(0.51-0.89)</td>
<td>4.5 x 10^-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGFBR2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>rs2082224 G>A</td>
<td>0.25</td>
<td>0.61</td>
<td>(0.44-0.85)</td>
<td>2.7 x 10^-3</td>
</tr>
</tbody>
</table>

Sorted by chromosomal position; linkage disequilibrium reduced to r^2 < 0.95; MAF, minor allele frequency; bold indicates p<6.2x10^-4 (Bonferroni corrected p-value accounting for LD between SNPs at r^2≥0.1); dbSNP 132. 1Listed as major>minor. 2HR, hazard ratio; CI, confidence interval. Adjusted for age at diagnosis, population substructure PCs, study site, histology (for analyses of all cases only), tumor stage (I.localized, II.regional, III.distant, unknown), tumor grade (1.well, 2.moderately, 3.poorly, 4.undifferentiated, unknown); and oral contraceptive use (yes, no, unknown).
Figure 1

A) *IL2RA* SNP rs11256497
Endometrioid EOC

B) *CTLA4* SNP rs231775
Clear Cell EOC

C) *TGFR2* SNP rs6770038
High Grade Serous EOC

D) *TGFR3* SNP rs4658265
Mucinous EOC

E) *TGFR2* SNP rs4522809
Any Invasive EOC
Figure 2

A IL2RA (Endometrioid)

B CTLA4 (Clear Cell)

C TGFBR2 (High Grade Serous)

D TGFBR3 (Mucinous)

E TGFBR2 (All Invasive EOC)
Figure 3

A

Endometrioid *IL2RA*

A_23_P127288

rs11256497

Endometrioid *IL2RA*

A_24_P230563

rs11256497

p = 0.001

p = 0.01

B

Endometrioid *IL2RA*

A_24_P230563

rs11256497

p = 0.01
Large-Scale Evaluation of Common Variation in Regulatory T Cell Genes and Ovarian Cancer Outcome

Bridget Charbonneau, Kirsten B Moysich, Kimberly R. Kalli, et al.

Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-13-0136

Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2014/01/28/2326-6066.CIR-13-0136.DC1

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.