Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer

Linda C. Sandin¹, Anna Orlova², Erika Gustafsson¹, Peter Ellmark⁴,⁵, Vladimir Tolmachev³, Thomas H. Tötterman¹, Sara M. Mangsbo¹

¹Dept. of Immunology, Genetics and Pathology, Div. of Clinical Immunology, Uppsala University, Uppsala, Sweden

² Dept. of Medical Chemistry, Preclinical PET Platform, Uppsala University, Uppsala, Sweden

³ Dept. of Radiology, Oncology and Radiation Sciences, Div. of Biomedical Radiation Sciences, Uppsala University, Uppsala, Sweden

⁴ Alligator Bioscience AB, Lund, Sweden

⁵ Dept. of Immunotechnology, Lund University, Lund, Sweden

Running title: Biodistribution and efficacy of local CD40 Ab injection

Keywords: local therapy, in vivo biodistribution, anti-CD40 agonistic therapy, immunotherapy, bladder cancer

This study was supported by The Swedish Cancer Society (THT) and the Swedish Research Council (THT). PE was sponsored by the Swedish Research Council (VR-IFA hosted by Lund University).
Abstract

Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment for advanced solid tumors and hematological cancers. Systemic anti-CD40 therapy has been associated with immune-related adverse events such as cytokine release syndrome and liver toxicity and local delivery is an attractive approach that could reduce toxicity. Herein, we compared local and systemic anti-CD40 antibody delivery to evaluate efficacy, toxicity and biodistribution in the experimental MB49 bladder cancer model. Antitumor effects were confirmed in the B16 model. In terms of antitumor efficacy, local anti-CD40 antibody stimulation was superior to systemic therapy at an equivalent dose and CD8 T-cells were crucial for tumor growth inhibition. Both administration routes were dependent on host CD40 expression for therapeutic efficacy. In vivo biodistribution studies revealed CD40-specific antibody accumulation in the tumor-draining lymph nodes and the spleen, most likely reflecting organs with frequent target antigen-expressing immune cells. Systemic administration led to higher antibody concentrations in the liver and blood compared to local delivery, and was associated with elevated levels of serum haptoglobin. Despite the lack of a slow-release system, local anti-CD40 therapy was dependent on tumor antigen at the injection site for clearance of distant tumors. To summarize, local low-dose administration of anti-CD40 antibody mediates antitumor effects in murine models with reduced toxicity and may represent an attractive treatment alternative in the clinic.
Introduction

In 2008, approximately 380,000 patients worldwide were diagnosed with bladder cancer and 150,000 succumbed to the disease (1). The majority of these patients present with superficial transitional cell carcinoma (Tis, Ta or T1) that is treated with transurethral resection followed by intravesical chemotherapy, or for high-risk tumors local Bacillus Calmette-Guérin (BCG) immunotherapy (2, 3). BCG treatment induces remission in a majority of patients but is associated with adverse events and 30-50% of the patients ultimately fail to respond (4).

Radical cystectomy for patients with muscle-invasive bladder cancer results in initial tumor control, but provides a five-year survival rate of only 40-60% due to the presence of micrometastatic disease (2). We have previously shown that local adenoviral CD40L (AdCD40L) as well as CpG therapy can induce systemic antitumor responses in experimental bladder cancer (5, 6). AdCD40L therapy has proven efficient and safe in both humans (7) and dogs (8). Consequently, we wanted to investigate if local low-dose agonistic CD40 antibody injection could clear experimental bladder cancer. CD40 is expressed by various cell types in the myeloid cell lineage, i.e. dendritic cells (DCs), macrophages and monocytes, B-cells as well as endothelial cells (9), and DCs are recognized as important targets for anti-CD40 antibody in cancer immunotherapy. Activated DCs can efficiently engulf, process and present tumor antigen to T-cells, resulting in powerful antitumor responses (10, 11). In addition to the antigen presenting cell (APC)-activating properties of anti-CD40 antibody, CD40 ligation on CD40-expressing tumor cells initiates programmed cell death (12), antibody-dependent cellular cytotoxicity (13), antibody-dependent cellular phagocytosis (14) or complement-mediated cytotoxicity (15), depending on the IgG subclass.

Several CD40 agonistic antibodies have been developed for clinical use by the intravenous (i.v.) administration route (16-18). The resulting systemic immune activation has
been associated with considerable toxicity, including grade 1 to 2 cytokine release syndrome and transient lymphopenia (16, 19). This study extends the observations of Fransen and colleagues, who compared local low-dose anti-CD40 therapy in combination with the slow-release adjuvant Montanide® of virally transformed murine tumors. Local low-dose administration was as effective as systemic high dose therapy, but with reduced liver toxicity (20). In the current study, we use an experimental bladder cancer model, a tumor well-suited for local immunotherapy for which novel therapies are needed to target disseminated disease. We wanted to investigate if locally administered anti-CD40 antibody could be as efficient as an equivalent dose delivered systemically, and to establish if the alternative administration route could reduce toxicity. Subsequently, we aimed to pinpoint the effector mechanisms behind the successful local CD40-stimulating immunotherapy of bladder cancer and, lastly, to compare the in vivo biodistribution between the two administration routes.

Materials and Methods

Cell lines and reagents

The murine bladder transitional cell carcinoma cancer cell line Mouse Bladder-49 (MB49; a kind gift from Dr. K. Esuvaranathan, National University of Singapore, Singapore in 1996) was cultured in DMEM+ GlutaMax supplemented with 10% FBS, 0.1mM sodium pyruvate, 100U/ml Penicillin-Streptomycin (PEST) at 37°C and 5% CO₂. Lewis Lung Cell Carcinoma-1 (LLC-1) (ATCC) was kept in the same culture medium as MB49. The D1 cell line (21) is a growth factor-dependent immature splenic mouse DC line cultured in IMDM supplemented with 10% FBS, 100U/ml PEST, 100μM β-Mercaptoethanol (Invitrogen) and 20ng/ml recombinant murine GM-CSF (Nordic Biosite) at 37°C and 5% CO₂. All cell lines were tested negative for mycoplasma but were not authenticated in our lab. Agonistic rat-anti-mouse
CD40 (clone: FGK4.5) and rat IgG2a (clone: 2A3) were purchased from BioXCell and diluted in PBS. Depletion of CD8⁺ cells were performed by injecting 20μg/g body weight rat-anti-mouse CD8a (clone: 53.6.72, BioXCell) intraperitoneal on d0, d1, d2, d6, d10 and d14. CD8⁺ T-cell depletion was confirmed by flow cytometry by staining with clone 53-5.8 (data not shown).

Animals

C57BL/6 mice were obtained from Taconic M&B (Denmark). CD40KO/ C57BL/6 mice were obtained from Jackson (USA, 002928 B6.129P2-CD40<tm1Kik>/J). Animals were housed at the Rudbeck Animal Facility and cared for by the staff according to regional regulation. All animal experiments were approved by Uppsala Animal Ethics Committee (Dnr: C303/9, C21/10, C11/11 and C38/11).

In vivo experimental design

Several variants of subcutaneous (s.c.) MB49 tumor models were used in this study. In the majority of experiments, 2.5x10⁵ cells were injected in the right flank of C57BL/6 mice with therapy conducted on d7, d10 and d13. For the biodistribution study, 2x10⁵ MB49 cells were inoculated in the right and left flank on d0. Ten days later 30μg radioactively labeled ¹²⁵I-CD40 antibody and ¹³¹I-rat IgG2a were mixed and injected once i.v. or peritumorally (p.t.) at the right side of the tumor. Animals were sacrificed 4h, 24h, 48h and 72h after injection, organs were isolated and their radioactivity was measured. Radioactivity of ¹²⁵I-CD40 antibody was measured in the energy window of 3-6 keV and ¹³¹I-rat IgG2a of 100-380 keV. In the last tumor model investigating the systemic effects of low-dose anti-CD40 therapy,
2.5x10^5 MB49 cells were injected in the right flank on d0 and close to the left shoulder on d1. Therapy was injected p.t. at the primary tumor, s.c. in the non-tumor flank or i.v. every third day for a total of three times. To keep a similar distance between injection site and the distant tumor as well as to reduce passive diffusion of antibodies in the void space of the skin, animals injected with s.c. anti-CD40 antibody in the non-tumor flank had both tumors inoculated on the same side of the animal, opposite to the injection side (Fig. 2E). Antibody solution was administered in 100μl. Tumor growth and survival was monitored throughout the experiment using a caliper and tumor size was calculated by the ellipsoid volume formula:

\[V = \frac{4}{3} \pi a \times b \times c \]

where \(a \), \(b \), and \(c \) are the radii of length, width, and depth of the tumor, respectively. Mice were sacrificed if the tumor exceeded 1cm^3 or if ulcers developed. Tumor rechallenge, by injection of 2.5x10^5 MB49 (contralateral flank) and LLC-1 cells (right foreleg), was performed on mice that had been tumor-free for over 100 days.

Labeling of antibodies

\(^{125}\text{I}\) and \(^{131}\text{I}\) were purchased from PerkinElmer. Chloramine-T and sodium metabisulfite were from Sigma Chemical Company. Chloramine-T and sodium metabisulfite solutions were prepared immediately before use. The radiochemical purity of the labeled antibody construct was analyzed using instant thin layer chromatography (ITLC) on 150-771 DARK GREEN, Tec-Control Chromatography Strips from Biodex Medical System. Distribution of radioactivity along the ITLC strips was measured using a Cyclone Storage phosphor system and analyzed with the OptiQuant image analysis software (PerkinElmer). Size-exclusion chromatography was performed on disposable NAP-5 columns (Amersham Pharmacia Biotech AB) according to the manufacturer’s instructions. The radioactivity was measured...
using an automated gamma-counter with a 3-inch NaI (Tl) detector (1480 Wizard; Wallac Oy, Turku, Finland). Monoclonal antibodies were labeled using Chloramine-T as an oxidant according to the following protocol. Anti-CD40 antibody was labeled with 125I. An antibody solution in PBS (40µg, 4-2µl) was mixed with radioiodine stock solution (2-5µl, 5-10 MBq) and 40µl PBS. The reaction was initiated by adding Chloramine-T (20µg, 1mg/ml in PBS). After 2min incubation at ambient temperature, the reaction was terminated by adding sodium metabisulfite (40µg, 2mg/ml in PBS). Rat IgG2a, was labeled with 131I in a similar way. Radiolabeled antibodies were purified from un-reacted radioiodine and low-molecular-weight components of the reactive mixture using size-exclusion chromatography on disposable NAP-5 columns. Radiochemical purity of the labeled antibodies was determined by radio-ITLC eluted with acetone:water (8:2) mixture. The yields were in the range of 65-75%. After size-exclusion purification, the radiochemical purity of the antibodies was over 99.5%.

Trichloroacetic acid precipitation

Trichloroacetic acid (TCA) precipitates high molecular-weight molecules. Precipitation was carried out according to the protocol described previously (22). Briefly, on top of 300µl of carrier solution (PBS/0.02% BSA, w/v), 200µl of plasma was added. Then 500µl of ice-cold 20% TCA/H2O (w/v) solution was added to precipitate high molecular-weight molecules in the plasma. Tubes were centrifuged and separated before individual measurement for radioactivity using an automated gamma-counter with a 3-inch NaI (Tl) detector.

Internalization of anti-CD40 antibody
Anti-CD40 antibody was conjugated with Alexa 488 protein-labeling kit according to manufacturer’s protocol (Invitrogen). The functionality of the labeled antibody was verified by staining of A20 cells (data not shown). D1 cells were seeded in 96-well plates and stimulated O/N with 1μg/ml LPS (Sigma) to up-regulate the expression of the CD40 receptor. Cells were incubated with 0.1μg/ml Alexa 488-conjugated anti-CD40 antibody for 15 or 60 min at 37°C or 4°C or left untreated before being fixed in 3%PFA/PBS on ice, and then washed twice in 0.5%PFA/PBS. Trypan blue (Invitrogen) was added just before flow cytometric analysis to quench any surface-bound antibody. Samples were run in triplicates.

In vivo CD40 expression

To evaluate which cell populations that could potentially act as targets for anti-CD40 therapy, naïve animals were injected s.c. with 30μg of anti-CD40 one, two or three times at 3-day intervals. Four hours post injection the spleen and (pooled) inguinal lymph nodes (LN)s were harvested and digested with Liberase TL (Roche) for 15 min at 37°C. The Liberase-treated tissue was passed through a MESH membrane, blocked for FcγR (TruStain fcX) and subsequently stained for CD11c (clone: N418), CD11b (clone: M1/70), F4/80 (Cl:A3-1), B220 (RA3-6B2) and CD40 (3/23) (all antibodies are from BioLegend). Staining with antibody clone 3/23 was not hampered by the presence of the therapeutic clone FGK4.5 on cells (data not shown). The following cell types were investigated: B-cells (B220+, CD11b−, CD11c−, F4/80−), conventional DCs (cDCs; CD11c^{hi}, CD11b^{−/−}, B220^{+}), medullary macrophage (MΦ; CD11c^{low/int}, CD11b^{+}, B220^{−}, F4/80^{+}), and subcapsular sinus MΦ (CD11c^{low/int}, CD11b^{+}, B220^{−}, F4/80^{+}). Samples were analyzed in a Canto II cytometer (BD Biosciences). Data analysis was performed with FlowJo software (Tree Star).
Haptoglobin and anti-rat IgG2a antibody measurements

Blood was collected by tail vein incision and serum was stored at -80°C. Mouse haptoglobin was detected by ELISA according to the manufacturer’s protocol (Life Diagnostics, Inc). Quantification of circulating anti-CD40 antibody was performed by ELISA. Briefly, wells were coated with 1.25μg/ml anti-rat IgG2a (clone: MARG2a-1, Serotec) and blocked with 3% milk powder before the addition of samples (1:10-1:75 dilution). HRP-conjugated mouse-α-rat kappa/lambda light chain (MARK-1/MARL-15, Serotec) was used for detection. Substrate (Super Signal pico chemoluminescence, Pierce) was added before the luminescence was measured with an ELISA reader (Fluostar optimal, Labvision). Samples were run in duplicates.

Statistical analysis

Survival data were plotted by the Kaplan-Meier method and analyzed by the log-rank test. When applicable, D’Agostino and Pearson omnibus normality test was used before selection of statistical test. Where indicated, the difference between groups was evaluated using unpaired t-test or paired t-test. P-values <0.05 were considered significant. Stars indicate the confidence interval (*P<0.05, **P<0.01, ***P<0.001). Statistical analyses were performed using GraphPad prism software (GraphPad Software, Inc.).

Results

Local low-dose anti-CD40 therapy results in improved survival and reduced toxicity compared to systemic treatment

10
To our knowledge a direct comparison between local and systemic administration of equal doses of anti-CD40 therapy has not been performed. Ten and 30μg of p.t. delivered antibody prolonged survival compared to control animals, while systemic therapy of the same doses did not (Fig. 1A, upper and middle panel). Only the highest systemic dose (100μg) resulted in prolonged survival that was similar to the local therapy-treated animals (Fig. 1A, lower panel).

Several immune-related side effects have been observed with systemic anti-CD40 antibody therapy in both preclinical models (23) and in patients (19). In our current study, levels of circulating therapeutic antibody were measured 4h after each injection (Fig. 1B). For all doses and administration routes the serum maximum level of anti-CD40 antibody occurred after the second injection, with the highest concentrations in animals treated systemically with 30 or 100μg of antibodies. Local immunotherapy led to reduced serum levels of antibody in all groups compared to that of the equivalent systemic dose. The initial reduction in systemic antibody levels could translate to reduced toxicity. In the current studies we used haptoglobin, an acute phase protein produced mainly by the liver, as a marker for systemic inflammation (24-26). Serum levels of haptoglobin were measured 24h after the first dose and elevated levels were detected in mice treated with i.v. injections (Fig. 1C). Local injection of the same dose did not elevate haptoglobin levels to the same degree, and neither p.t. nor i.v. administered irrelevant antibody affected haptoglobin levels (data not shown).

The local low-dose strategy was also assessed using the fast-growing B16-F10 tumor model where tumor growth inhibition was evident compared to control animals (Supplementary Fig. S1A). Furthermore, weekly dosing with p.t. low-dose anti-CD40 was evaluated in a high MB49-tumor burden model. Both the weekly and the three-day interval treatment schedule restrained tumor growth. However, elevated levels of ADA were detected
in the serum already after the second injection of anti-CD40 antibody on a weekly schedule, which was not seen using the three-day interval protocol (data not shown).

CD8⁺ T-cells, host CD40 expression and tumor antigen at the injection site are all required for full therapeutic efficacy

CD40 is widely expressed on different cell types *in vivo*, and a variety of cells have been proposed to be effectors in CD40 agonistic therapy. Macrophages (27, 28), B-cells (29), NK-cells indirectly (30), and T-cells (20) via DC activation have been suggested to play crucial roles in tumor eradication. We asked whether our local low-dose administration of anti-CD40 antibody would depend on the presence of CD8⁺ T-cells by using cell-depletion experiments. CD8⁺ cells were necessary for optimal antitumor effects since depleted mice showed no survival benefit compared to controls (Fig. 2A). Furthermore, depletion of CD4⁺ T-cells yielded variable results since 6/10 animals experienced rapidly growing tumors and 3/10 had recurrence of tumors after initial remission (data not shown). Removal of Treg cannot be excluded. Previous studies have shown that the CD40-CD40L interaction not only activates APCs but generates a direct antitumor effect in CD40-expressing tumors (12, 31). Throughout this study, MB49 cells presented a negligible amount of CD40 expression when staining with the therapeutic antibody clone (data not shown). Despite this result, we wanted to exclude tumor cell death induced directly by the antibody and therefore subjected tumor-bearing C57BL/6 WT and CD40⁻/⁻ KO mice to local or systemic treatment. Figure 2B demonstrates that host CD40 expression is required for effective anti-CD40 therapy regardless of administration route. The KO mice had elevated levels of circulating anti-CD40 antibody 4h after the last treatment compared to WT animals (Fig. 2C and 1B).

To establish tumor-specific memory after local anti-CD40 therapy, animals exhibiting complete tumor regression were rechallenged with MB49 cells and LLC-1 (Fig. 2D). LLC-1
tumors grew progressively in both naïve and cured mice whereas progressive growth of MB49 tumors was only seen in naïve animals.

Since low but detectable levels of anti-CD40 antibody were found in the blood after local administration, we wanted to investigate if distant tumors could be cleared and whether tumor antigens are required at the injection site, as demonstrated earlier by Fransen and colleagues (20). To minimize systemic antibody dissemination, 15μg of anti-CD40 antibody was used but without a slow-release formulation. A twin-tumor model was set up by engrafting MB49 cells in the right flank on d0 and close to the left shoulder on d1 (Fig. 2E).

As visualized in Fig. 2F, anti-CD40 antibody needs to be injected in close proximity to a tumor (or systemically) in order to affect both the treated site as well as the distant tumor. Therapy injected solely in the skin (non-tumor side) did not inhibit tumor growth. For individual tumor growth, see Supplementary Fig. S1B.

We determined the level of effector cytokines in the serum and registered a dose-dependent elevation of serum IFNγ, IP-10 and TNFα 4h after the second dose using all administration routes (data not shown). In agreement with the clinical observation using the humanized CP-870,893 antibody (16, 19), we registered a transient B-cell depletion after a single injection of anti-CD40 antibody (data not shown), which was less pronounced after local administration.

Local and systemic anti-CD40 antibody accumulates in secondary lymphoid organs

To investigate the in vivo biodistribution of anti-CD40 agonist or control antibody upon local versus systemic administration, we measured antibody accumulation in target organs after a single injection. For this purpose, anti-CD40 antibody was labeled with 125I and the irrelevant isotype with 131I in order to allow simultaneous measurement in the same animal by gamma-
spectrometry. The binding-specificity of the 125I-CD40-specific antibody was confirmed before experimental initiation (Supplementary Fig. S2A). An equal dosage mixture of 125I-CD40-specific and 131I-rat IgG2a control antibodies were injected into mice carrying a tumor in each flank either p.t. at the right side tumor or i.v. At 4h, 24h, 48h and 72h post injection, animals were sacrificed, organs isolated and radioactivity measured. A high accumulation of 125I-CD40-specific antibody was detected in the spleen at 4h post-injection followed by a decrease over time (Fig. 3A). 131I-rat IgG2a control antibody uptake in the spleen was significantly lower.

The highest amount of locally administered anti-CD40 antibody was found in the spleen at 24h, followed by a decline. The uptake of 131I-rat IgG2a control antibody in the same animal was significantly lower than that of the 125I-CD40-specific antibody (Fig. 3A). The spleen accumulation was significantly lower after p.t. administration than after i.v. injection at 4h and 24h. At subsequent time points the radioactivity uptakes were equal for both administration routes. Anti-CD40 antibody uptake in the right TDLN (tumor-draining lymph node) after p.t. injection was much higher at 4h as compared to that of systemic administration (Fig. 3B). Systemic delivery of anti-CD40 antibody induced a more pronounced accumulation in the liver compared to p.t. injection at 4h and 24h (Fig. 3C). Furthermore, local administration resulted in a lower initial antibody concentration in the blood at 4h and 24h (Fig. 3D), in agreement with our ELISA results. We found that the concentration of radioactivity in the plasma was higher than in whole blood indicating minor (if any) binding of 125I-CD40 to blood cells (Supplementary Fig. S2B). In summary, p.t. delivery significantly reduced anti-CD40 antibody concentrations in the spleen, the liver and blood compared to i.v. injection at both 4h and 24h post injection.

Figure 4 demonstrates antibody uptake for selected target organs at 4h (Fig. 4A) and 24h (Fig. 4B). Results from the 48h and 72h time points are visualized in Supplementary Fig.
S3. Statistical differences between the anti-CD40 and the control antibody and between the two administration routes in all organs investigated are summarized in Supplementary Table S1-4.

Repeated anti-CD40 therapy modulates CD40 expression as well as immune cell distribution in lymphoid tissue

The anti-CD40-specific antibody demonstrated a more rapid clearance from the blood than the control antibody. In order to verify how much of the blood-borne radioactivity was still conjugated we performed a TCA precipitation assay. Whereas almost all 131I was conjugated to rat IgG2a in both treatment groups during the entire study period, a decrease of activity in the high molecular weight form was detected for the 125I-CD40-specific antibody conjugate (Fig. 5A). This suggests that the anti-CD40 antibody was efficiently sequestered from the circulation due to specific interaction followed by subsequent internalization and catabolism. This could be by active uptake in cells and we therefore incubated fluorophore-conjugated anti-CD40 antibody with CD40-expressing DCs for 15 or 60 min and subsequently quenched surface-bound antibodies. Our findings imply that anti-CD40 antibody is internalized within 15 min (Fig. 5B). As several cell populations in lymphoid organs, including B-cells, CD8$^+$, CD8$^-$ cDCs, macrophages, NK-cells, NKT-cells and activated CD4$^+$ T-cells, can act as potential targets for CD40-activating therapy we investigated the expression of CD40 on immune cells from the inguinal LNs (Fig. 5C) and the spleen (Fig. S2C) 4 hours after one, two or three s.c. injections of 30μg anti-CD40. Lymph node B-cells, cDCs and macrophages all increased their surface expression of CD40 in a dose-dependent manner following anti-CD40 injections (Fig. 5C, upper panel). Also, elevated numbers of total cDCs and macrophages were found in response to therapy (Fig. 5C, lower panel). For the spleen the
results were slightly more variable; however there was an apparent drop in the numbers of monocyte-derived macrophage and DCs after the third injection (Supplementary Fig. S2C).

Discussion

Effective tumor immunotherapy needs to overcome the challenge of poorly immunogenic antigens (32), lack of danger signals (33) and the presence of an immunosuppressive milieu caused by both the tumor and the infiltrating cells (34). CTLs exhibit poor activation by improperly activated or immature DCs (35, 36). The general principle of anti-CD40 antibody in tumor immunotherapy, as demonstrated earlier, is to create a T helper-independent activation of CTLs by direct licensing of DCs (10, 11, 37).

We used p.t. injection as local administration route in this study since this confers minimal mechanical stimulation of the tumor. A comparison with intratumoral injection in tumors using the same treatment protocol as in Fig. 1 showed that there was no advantage of this approach over p.t. delivery (data not shown).

A survival benefit was observed for mice treated with local low-dose anti-CD40 antibody (10 and 30μg) compared to the same dose delivered systemically, which indicate that systemic injections in this dose range result in a low concentration of antibody in the tumor/TDLN axis that is insufficient for CTL activation. As no difference in survival was noticed at the 100μg dose between the two administration routes, a high level of circulating antibody could potentially overcome this problem but with increased side effects. We registered elevated levels of serum haptoglobin as a sign of systemic inflammation (24-26) already at low i.v. anti-CD40 antibody doses. Furthermore, liver exposure to the antibody was appreciably higher after i.v. compared to p.t. injection. These data suggest that local low-dose antibody delivery can reduce liver toxicity compared to systemic therapy, which could be
valuable in the clinic as patients often display metastatic disease that could be targeted by recruiting immune cells rather than the anti-CD40 antibody itself.

Our finding that CD8+ T-cells are important for the antitumor effects of anti-CD40 therapy is consistent with that shown by other groups (23). However, CD40 activation can target many other cell types such as macrophages, which could participate in tumor eradication. The differences observed may be dose- or animal model-related. CD40-stimulating therapy can have a direct antitumor effect on CD40-expressing tumors by inducing apoptosis (12, 31). Throughout this study MB49 cells presented a negligible level of CD40 expression based on staining with the therapeutic antibody. Notably when staining with the anti-CD40 antibody clone 3/23 on MB49 cells, CD40 expression could be visualized. To confirm that locally delivered therapy was fully dependent on host CD40 expression we made use of CD40-/- KO animals. Endogenous CD40 expression was required for full therapeutic effect regardless of injection site. We also confirmed the antitumor effects in the CD40-negative B16 melanoma model in wild-type mice. In contrast to our MB49 model, human bladder cancer cells usually present CD40 expression compared to the CD40 negative urothelium (38). Also, CD40 ligation in the form of cell-surface bound CD40L or Fcγ receptor cross-linked anti-CD40 antibody induces apoptosis in transitional bladder carcinoma (39). Engaging both the direct- and indirect-killing mechanisms for the treatment of bladder cancer could be even more efficient. These observations, together with the convenient intra-vesicle access of bladder cancer, make this tumor a suitable target for localized anti-CD40 therapy.

The presence of tumor antigen in close proximity of the anti-CD40 antibody injection for systemic tumor-eradication was demonstrated by Fransen and colleagues (20). Our data strengthen these results and extended it further by showing substantiated levels of the antibody in the regional lymph nodes, both at the injection site and at the non-treated side.
These results suggest that tumor-localized anti-CD40 therapy can be effective for targeting disseminated bladder cancer.

We performed *in vivo* biodistribution studies and detected high initial levels of anti-CD40 antibody in the spleen after i.v. injection and in the right TDLN after p.t. delivery. However, at later time points accumulation of anti-CD40-specific antibody was observed in these lymphoid organs using both administration routes, which may reflect the abundance of CD40-positive target cells. The drainage of both anti-CD40 antibody and tumor antigens to the same TDLN could increase the possibility of tumor-specific T-cell triggering by locally activated APCs as indicated by Fransen and colleagues (20). Therefore, our demonstration of a high concentration of anti-CD40 antibody in the TDLN appears crucial for optimal anti-CD40 antibody therapy. In addition, our *in vivo* study revealed increased CD40 expression and expansion of target APCs in the LN after repeated anti-CD40 injections likely reflecting that the LN is a key player in local anti-CD40 therapy.

The kinetics of p.t. and i.v. delivered anti-CD40 antibody in the blood was determined by ELISA and by radiolabeled antibody. Locally injected antibody reached its maximum after 24h followed by exponential decrease. A subsequent injection caused even higher serum levels for both administration routes but after the third treatment (d13) anti-CD40 antibody levels were low or non-detectable. Drug elimination could be due to the induction of ADA, the inability of ELISA to measure ADA complexes, and/or increased cell/tissue expression of CD40 leading to rapid antibody clearance. ADA-dependent serum clearance has also been suggested in preclinical studies using cynomolgus monkeys (40). Furthermore, elimination of \(^{125}\text{I}-\text{CD40-specific antibody from the circulation was faster than that for the control, which likely reflects specific binding outside the blood (and not ADA-associated elimination) as these animals received only a single injection. We found higher amounts of circulating anti-CD40 antibody in CD40 KO mice compared to WT indicative of target-specific sequestering.}
of the antibody. This correlates well with the clinical findings of CD40-agonistic antibodies, such as the CP-870,893 antibody (19), and the weak CD40 agonist SGN-40 antibody (41), both display relatively short half-life. This suggests that there may be a target-specific clearance from the blood in humans, and it has been speculated that this reflects a large sink of CD40 molecules in vivo (16). Our results demonstrate that, in mice, this sink is primarily located in the secondary lymphoid organs. In the LN and spleen the CD40-expressing cells are B-cells, CD8+, CD8- cDCs, a variety of macrophages, NK-cells, NKT-cells as well as activated CD4+ T-cells. Interestingly, we found that macrophages as well as DCs both increased in numbers and upregulated their CD40 expression subsequent to repeated CD40 agonist injections whereas B-cells only upregulated CD40 expression in the LN. The result was slightly more variable for spleen cells but the drop in monocyte-derived macrophages as well as DCs could reflect a recruitment of APCs into the LN and/or tissues. Furthermore, our data showed that anti-CD40 antibody was rapidly (15min) internalized by CD40-expressing DCs, most likely contributing to reduced serum levels of the antibody. In our hands, tumor-targeting seems minimal since no major specific accumulation of radio-labeled anti-CD40 could be detected. This is also in agreement with the lack of CD40-staining on MB49 cells by flow cytometric analyses using the labeled therapeutic antibody. The correlation between blood and tumor, where late time-points (48 and 72h) demonstrate specific accumulation of irrelevant antibody, further supports the target-specific sequestering of antibodies.

Systemic anti-CD40 therapy has been used extensively in the clinic (16, 17, 19, 41) and in preclinical models, with immune-related adverse events such as systemic cytokine release syndrome and liver toxicity. Lately, the focus has shifted towards local administration where doses and consequently toxicity can be reduced but potentially retaining the efficacy of the systemic antitumor effects (20, 23, 29, 42-44).
In summary, this is to our knowledge the first study exploring local and systemic anti-CD40 therapy side-by-side in a dose-comparison study and including an in-depth analysis of antibody biodistribution \textit{in vivo}. Our data support the use of local low-dose delivery of anti-CD40 antibody as an alternative to systemic high-dose therapy. This should be a relevant immunotherapeutic approach in combinatorial treatments with current immunomodulatory agents for localized and disseminated bladder cancer, and possibly other tumor types as well.

Acknowledgements

We thank Ann-Charlotte Hellström (IGP) and Anna Rosén (Alligator Bioscience, Inc.) for excellent technical assistance.
References

Figure legends

Figure 1. Local low-dose anti-CD40 therapy is superior to systemic treatment and reduces circulating antibodies and haptoglobin levels. (A) C57BL/6 mice were treated as described in material and methods. Survival data are shown for 8 mice/group (Log-rank test). (B) Blood was collected for kinetic analysis 4h post every treatment occasion from mice in (A) and analyzed with ELISA. Data are shown as mean±SEM of 6 mice/group and time point. Samples were run in duplicates. (C) Serum was isolated 24h post the first therapy occasion of mice in Fig. 2F and analyzed for haptoglobin levels with ELISA. Data are shown as mean±SD of 9 mice/group and time point (Student’s t-test, *p<0.05, **p<0.01, ***p<0.001).

Figure 2. Successful peritumoral anti-CD40 therapy is dependent on CD8+ cells, host CD40 expression and tumor antigen by the injection site. C57BL/6 mice were treated as described in material and methods. (A) One therapy group was depleted of CD8+ cells. Survival data of 7-10 mice/group are shown. (B) Anti-CD40 therapy was evaluated in WT and CD40 KO C57BL/6 animals. Survival curve is shown for 8 mice/group (Log-rank test). (C) Blood kinetic analysis of serum anti-CD40 antibody 4h after the last treatment was measured with ELISA. Data are shown as mean±SD of 5 mice/group (Student’s t-test). (D) Complete responders of local anti-CD40 therapy were rechallenged with 2.5x10^5 MB49 and LLC-1 cells to evaluate tumor-specific memory. Naïve mice, not age-matched, were inoculated with both cell lines on the right and left flank, respectively. Data are visualized as percent regressing or progressively growing tumors. (E) MB49 cells were injected on d0 and on d1 of individual mice and treated with 15μg of anti-CD40 antibody (black arrow) every 3rd day starting on day 7 according to the illustration. (F) Tumor growth of animals presented as number of regressed or growing tumors per treatment group (n=9). (*p<0.05, **p<0.01, ***p<0.001)
Figure 3. CD40 agonist accumulates in secondary lymphoid organs. C57BL/6 mice were treated as described in materials and methods. Target organs (A-D) were isolated 4h, 24h, 48h and 72h post-treatment and measured for accumulated radioactivity and visualized as % injected dose/gram tissue (%ID/g). Statistical significance is calculated between i.v. and p.t. administrations (mean±SD of 4 mice/group, Student’s paired t-test).

Figure 4. In vivo biodistribution of target organs 4h and 24h post injection of 125I-CD40-specific and 131I-rat IgG2a control antibody. Radioactive uptake of target organs (A) 4h and (B) 24h post-injection of animals in Fig. 3. Data are presented as % injected dose/gram tissue (%ID/g), mean ±SD of 4 mice/group. Statistical differences between anti-CD40 and rat IgG2a and between the two administration routes are depicted in Supplementary Table S1 (4h) and S2 (24h).

Figure 5. CD40-specific antibody is catabolized and rapidly internalized by CD40-expressing cells. (A) Plasma collected during the biodistribution study was subjected to TCA precipitation (mean±SD of 4 mice/group). (B) LPS-stimulated D1 cells were incubated with Alexa 488-conjugated anti-CD40 antibody for 15 or 60min at 37°C or 4°C or left untreated. Just before flow cytometric analysis, Trypan blue (+TB) was added to quench any surface-bound antibody. Samples were run in triplicates (mean±SD). (C) CD40-expressing target cell populations were investigated in inguinal LNs after one, two or three doses of anti-CD40 antibodies (3-day interval scheme), CD40 expression and cell distribution were analyzed four hours post-injection. The upper panel shows CD40 expression based on geometric mean and the lower panel shows the frequency of total cells. Statistical significance is calculated
between rat IgG2a and anti-CD40 (mean±SD of 3 mice/group, Student’s t-test, *p<0.05,
p<0.01, *p<0.001).
Figure 1

A

Percent survival

Days

anti-CD40 10μg p.t. (3/8)
anti-CD40 10μg i.v. (1/8)
Rat IgG2a 30μg p.t. (0/8)
Rat IgG2a 30μg i.v. (0/8)
PBS p.t. (0/8)

B

anti-CD40 10μg

Serum levels rat IgG2a (μg/ml)

Days

Intravenous
Peritumoral

anti-CD40 30μg

Serum levels rat IgG2a (μg/ml)

Days

Intravenous
Peritumoral

C

Haptoglobin ELISA

Percent survival

Days

anti-CD40 100μg p.t. (6/8)
anti-CD40 100μg i.v. (5/8)
Rat IgG2a 30μg p.t. (0/8)
Rat IgG2a 30μg i.v. (0/8)
PBS p.t. (0/8)

Serum haptoglobin (ng/ml)

PBS
anti-CD40 5μg
anti-CD40 15μg

Intravenous
Peritumoral
Subcutaneous

Figure 2

A
Survival CD8 depletion

- anti-CD40 30 µg p.t. - anti-CD40 30 µg p.t. + CD8 dep
- Rat IgG2a 30 µg p.t. - PBS p.t.

B
Survival WT and KO

- WT anti-CD40 30 µg p.t. - KO anti-CD40 30 µg p.t.
- WT anti-CD40 30 µg i.v. - KO anti-CD40 30 µg i.v.
- WT no therapy - KO no therapy

C
Blood kinetics

- anti-CD40 30 µg p.t. - anti-CD40 30 µg i.v.

D
Rechallenge

- Naive (n=4)
- anti-CD40 10 µg p.t. (n=5)
- anti-CD40 30 µg p.t. (n=8)

E
PBS p.t. by tumor
anti-CD40 p.t. by tumor
anti-CD40 s.c. non-tumor side
anti-CD40 i.v.

- 2nd tumor (day 1)
- 1st tumor (day 0)
Figure 3

(A) Spleen

(B) TDLN right (injected side)

(C) Liver

(D) Blood

- 125I-CD40 antibody 30µg i.v.
- 131I rat IgG2a 30µg i.v.
- 125I-CD40 antibody 30µg p.t.
- 131I rat IgG2a 30µg p.t.
Figure 4

A

In vivo biodistribution 4h

- 125I-CD40 antibody 30 μg i.v.
- 131I-rat IgG2a 30 μg i.v.
- 125I-CD40 antibody 30 μg p.t.
- 131I-rat IgG2a 30 μg p.t.

B

In vivo biodistribution 24h

- 125I-CD40 antibody 30 μg i.v.
- 131I-rat IgG2a 30 μg i.v.
- 125I-CD40 antibody 30 μg p.t.
- 131I-rat IgG2a 30 μg p.t.

Uptake, %ID/g

- Blood
- TDLN right (injected side)
- Tumor right
- TDLN left (non-injected side)
- Tumor left
- Liver
- Spleen
Figure 5

A. Antibody/radionuclide complex in plasma

- 131I-rat IgG2a 30 µg p.t.
- 131I-rat IgG2a 30 µg i.v.
- 125I-CD40 antibody 30 µg p.t.
- 125I-CD40 antibody 30 µg i.v.

B. Internalization 15min

- % CD40 expressing DCs

- anti-CD40 37°C
- Ctrl 37°C

- anti-CD40 4°C
- Ctrl 4°C

C. B-cells, cDCs, Medullary MΦ, Subcapsular sinus MΦ

- CD40 expression (Geo MFI)

- Number of doses

- B-cell frequency of total cells
- eDC frequency of total cells
- MΦ frequency of total cells

- PBS s.c.
- Rat IgG2a 30 µg s.c.
- anti-CD40 30 µg s.c.
Cancer Immunology Research

Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer

Linda C Sandin, Anna Orlova, Erika Gustafsson, et al.

Cancer Immunol Res Published OnlineFirst October 21, 2013.

Updated version Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-13-0067

Supplementary Material Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2013/10/21/2326-6066.CIR-13-0067.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.