Identification of Anti-CA125 Antibody Responses in Ovarian Cancer Patients by a Novel Deep Sequence-Coupled Biopanning Platform

Kathryn M. Frietze1, Richard B.S. Roden2, Ji-Hyun Lee3, Yang Shi3, David S. Peabody1, and Bryce Chackerian1

Abstract

High-grade epithelial ovarian cancer kills more women than any other gynecologic cancer and is rarely diagnosed at an early stage. We sought to identify tumor-associated antigens (TAA) as candidate diagnostic and/or immunotherapeutic targets by taking advantage of tumor autoantibody responses in individuals with ovarian cancer. Plasma-derived IgG from a pool of five patients with advanced ovarian cancer was subjected to iterative biopanning using a library of bacteriophage MS2 virus-like particles (MS2-VLPs) displaying diverse short random peptides. After two rounds of biopanning, we analyzed the selectant population of MS2-VLPs by Ion Torrent deep sequencing. One of the top 25 most abundant peptides identified (DISGTNTSRA) had sequence similarity to cancer antigen 125 (CA125/MUC16), a well-known ovarian cancer–associated antigen. Mice immunized with MS2-DISGTNTSRA generated antibodies that cross-reacted with purified soluble CA125 from ovarian cancer cells but not membrane-bound CA125, indicating that the DISGTNTSRA peptide was a CA125/MUC16 peptide mimic of soluble CA125. Preoperative ovarian cancer patient plasma (n = 100) was assessed for anti-DISGTNTSRA, anti-CA125, and CA125. Patients with normal CA125 (<35 IU/mL) at the time of diagnosis had significantly more antibodies to DISGTNTSRA and to CA125 than those patients who had high CA125 (>35 IU/mL). A statistically significant survival advantage was observed for patients who had either normal CA125 and/or higher concentrations of antibodies to CA125 at the time of diagnosis. These data show the feasibility of using deep sequence-coupled biopanning to identify TAA autoantibody responses from cancer patient plasma and suggest a possible antibody-mediated mechanism for low CA125 plasma concentrations in some ovarian cancer patients.

Introduction

There are more deaths from epithelial ovarian cancer than any other gynecologic cancer, and it is one of the top five causes of cancer death in women in the United States (1). Ovarian cancer is usually diagnosed after the disease has disseminated. Despite aggressive surgical and chemotherapeutic interventions, dissemination is associated with poor outcomes (2). For this reason, development of diagnostic tests for early-stage disease and of more effective, better-tolerated treatments for ovarian cancer are high research priorities (3).

Many cancers are associated with autoantibody responses to tumor-associated antigens (anti-TAA). Anti-TAAs are attractive candidates for the detection of preclinical disease because they often occur early in disease and are less prone to variation from confounding factors than other circulating protein biomarkers (4–9). Furthermore, the ability to induce anti-TAAs suggests that the tumor antigen is immunogenic in at least some patients and is a potential target for immunotherapy.

In this study, we took an unbiased approach to identifying the targets of anti-TAAs in ovarian cancer patients. Our laboratory has developed a novel affinity selection technology based on virus-like particles (VLP) of the RNA bacteriophage MS2 (10). Because VLPs are highly immunogenic, we have used this technology to identify vaccines that elicit high-titer antibody responses mimicking the activity of the selecting monoclonal antibody (mAb; refs. 11–13). Here, we report a novel application of the MS2-VLP affinity selection technology to identify anti-TAAs in ovarian cancer patients. By coupling the affinity selection capabilities of the VLP platform with highly sensitive Ion Torrent deep sequencing, we identified immunoepitopes recognized by ovarian cancer patient antibodies, including the well-known ovarian cancer antigen CA125. Patients with antibodies to this peptide had less serum CA125 and better outcomes.

Materials and Methods

Patient plasma samples and IgG isolation

Patients (n = 100) with ovarian cancer stages I, II, and III were recruited at the Johns Hopkins Hospital (Baltimore, MD). Patient blood was collected into heparin-treated tubes prior to surgery. Plasma was obtained and stored at −80°C. Written informed

Affinity selection with MS2-VLPs

Affinity selections were done overnight at 4°C using a pool of patient IgG (500 ng) and mixtures of 6-, 7-, 8-, and 10-mer random peptide MS2-VLP libraries (10 μg each), generated as previously described (13), in 100 μL total volume with PBS. Antibody/VLP complexes were mixed with 10 μL Dynabeads Protein G, incubated for 4 hours at 4°C on a rotator, washed 6 times in PBS, eluted with 50 μL 0.1 mol/L glycine pH 2.7 for 10 minutes at room temperature, and immediately neutralized with 5 μL 1 mol/L Tris pH 9.0. Selections were done in triplicate, and eluates pooled for RT-PCR amplification of corresponding VLP RNA.

RT reactions were prepared using M-MLV RT (Invitrogen) and a primer specific for the MS2 coat protein transcript. The RT reaction mixture contained the following in a 20 μL total reaction: 1 μL 10 mmol/L dNTP mix (Invitrogen), 4 μL 5× First Strand Buffer (Invitrogen), 2 μL 0.1 mol/L DTT, 200 U M-MLV RT (1 μL), 8 μL eluted VLPs, and 4 μL 10 μmol/L E2 primer (5′-TACGCGTGTTGCGCACCCCAA-3′). Primer, dNTPs, and eluted VLPs were heated to 65°C for 5 minutes and quick-chilled on ice. DTT and 5× First Strand Buffer were added and incubated at 37°C for 2 minutes, and then M-MLV RT was added. This reaction was incubated at 37°C for 50 minutes, and then 70°C for 15 minutes. Resultant cDNA was used in subsequent PCR reactions to amplify the recovered sequences. High Fidelity Platinum Taq polymerase (Invitrogen) was used in 50 μL total reactions according to the manufacturer's recommended conditions. Primers for PCR amplification were E3.2 (5′-CGCGGCTTTGTTGACACCGCCG-3′) and 62up (5′-CTATGCGGTTGTTGACAGG-3′), with 35 cycles of PCR at 60°C annealing temperature. RT reaction from above (2 μL) was used as template for PCR in 8 replicates. PCR reactions were pooled and purified by Qiagen quick PCR purification columns (Qiagen) following the manufacturer's protocol. Purified PCR products were digested with BamHI and Saff (New England Biolabs) for 1 hour at 37°C, and purified using Qiagen Gel Extraction Kit (Qiagen). Digested PCR products were cloned into BamHI/Saff digested pDSP62(arm) vector plasmid (13) with T4 DNA ligase. Ethanol precipitated ligation reactions were transformed into electroporated 10G Escherichia coli cells and grown overnight in LB. Plasmid libraries were isolated with the Qiafilter Plasmid Purification Maxiprep Kit (Qiagen), digested with KpnI to eliminate wild-type plasmid background, ethanol precipitated, and transformed into C41 (pSspa) cells for generation of corresponding selectant MS2-VLP libraries (13). VLPs were isolated as indicated above and used in another round of affinity selection with patient plasma IgG as described above.

Ion Torrent sequencing of selectant populations

Affinity-selected plasmid libraries were used in PCR reactions with primers containing Ion Torrent adapter sequences and 4 nucleotide barcodes. PCR reaction mixtures were carried out in 50 μL total volume, with High Fidelity Platinum Taq polymerase (Invitrogen) using the manufacturer's protocol. These primers are as follows: ITBC-rev (5′-CTCTCTATGGGCGACATGGTATTAGACGCGAGTTAGAGC-3′) and ITBC-X (5′CACTCATCCCTGCGTGTCATTGCCACACACACCCACCCACAC-3′) where XXXX corresponds to a 4-nucleotide barcode sequence of ITBC-1 (AGTC), ITBC-2 (CGTA), ITBC-3 (CTAG), and ITBC-4 (TACC). Plasmid template (50 ng) was added to the PCR reaction with 20 cycles of amplification at 55°C annealing temperature. PCR products were separated on a 1.5% agarose TBE gel, purified by Qiagen Gel Extraction Kit following the manufacturer's recommended protocol, and sequenced with an Ion Torrent deep sequencer.

Data analysis and selection of candidate peptides

Raw sequencing data were quality controlled and processed using custom MATLAB scripts (details in Supplementary Material). Final data sets were analyzed using Microsoft Excel and NCBI BLAST to identify peptides with sequence similarity to human protein sequences. The top 25 peptides identified for the second round of affinity selections with ovarian cancer patient IgG were analyzed with NCBI BLAST, limiting the query to the nonredundant human protein sequences. The corresponding reports were analyzed for potential hits of interest.

Generation of MS2-DISGTNTSRA

Primers were generated for site-directed mutagenesis of the pDSP62 plasmid to construct MS2-DISGTNTSRA VLPs. Plasmid identity was confirmed by sequencing and used to generate corresponding MS2-VLPs displaying the DISGTNTSRA peptide in the AB loop of the MS2-coat protein dimer in C41 E. coli cells. Cultures of C41 cells harboring the expression plasmids were grown to OD 600 nm of approximately 1.0 and induced with 0.4 mmol/L IPTG for 3 hours. Cells were pelleted, frozen at −80°C, and VLPs were isolated as previously described (13).

Immunization of mice with MS2 and MS2-DISGTNTSRA

Animal work was carried out with the approval of the University of New Mexico IACUC. BALB/c mice (3–8 mice/group) were immunized with 5 μg VLP intramuscularly three times at 2-week intervals in PBS. Two weeks after the final immunization, mice were sacrificed and blood collected by cardiac puncture under appropriate anesthetic and analgesic.

ELISA

ELISA plates were coated with purified CA125 protein (US Biological, 100 U/well) or streptavidin (10 μg/mL) in 100 μL volumes by incubating at 37°C for 2 hours or overnight at 4°C. Blank wells (not coated with CA125) were used as a negative control. After washing with PBS, streptavidin-coated plates were subsequently treated with succinimidyl 6-(betamaleimidomopropionamido)hexanoate (SMPH) and synthetic peptide DISGTNTSRA GC GGCG (Genscript). Plates were then blocked with 0.5% dry milk/PBS (300 μL/well) for 2 hours at room temperature. Serum samples were added in triplicate at 1:100 dilutions (CA125 assay) or 1:200 dilutions (peptide assay) in 0.5% dry milk/PBS.
and incubated for 2 hours at room temperature. Plates were washed in PBS and HRP-conjugated goat anti-mouse IgG (1:5,000 dilution) or HRP-conjugated donkey anti-human IgG (1:5,000 dilution) was added in 0.5% milk/PBS in a total volume of 100 μL (CA125 assay) or 200 μL (peptide assay). Plates were incubated for 1 hour at room temperature, washed with PBS, and then TMB substrate was added. Plates were incubated at room temperature with shaking until sufficient color was developed. For CA125 assay, 100 μL HCl stop solution was added and mixed prior to reading at 450 nm. For peptide assay, plates were read at 630 nm.

Statistical analysis

Demographic and clinical characteristics of the study patients were summarized with descriptive statistics. Spearman correlation coefficient was used to assess the association among CA125, anti-CA125, and anti-DISGTNTSRA plasma levels. Patients were divided into two groups by CA125 (normal: <35 IU/mL vs. elevated: >35 IU/mL), anti-DISGTNTSRA (cutoff at median, positive if ABS 630 nm >1.0380 vs. negative if ABS 630 nm <1.0380) and anti-CA125 (positive if ABS 630 nm reading >0.295 vs. negative if ABS 630 nm reading <0.295). For these dichotomized groups, the exact Pearson χ² test with Monte Carlo estimates was used to assess the associations of anti-CA125 or anti-DISGTNTSRA with CA125. The McNemar χ² test was used to assess whether the proportion of pairs for elevated CA125 is the same as the proportion of pairs for anti-CA125 (also for that of anti-DISGTNTSRA positive). Survival data were available for 60 patients (stage I/II, n = 9; stage III, n = 51). The Kaplan–Meier curve along with the log-rank test was used to compare the median survival time between subgroups of CA125, anti-CA125, or anti-DISGTNTSRA. The hazard ratios (HR) were estimated by Cox proportional hazard models. The proportional hazard assumption was checked by testing time (HR) were estimated by Cox proportional hazard models. The assumption of one tumor antigen.

We performed two rounds of biopanning with pooled patient IgG to a VLP library displaying random 6-, 7-, 8-, and 10–amino acid sequences (and containing >10¹¹ individual members) following a selection protocol (Fig. 1 schematic). After each round of selection, Ion Torrent deep sequencing was used to identify selected peptide sequences. For each unique peptide, the absolute number of sequences and its percentage of the total population in the sample were determined. For each peptide identified in the second round of selection, the corresponding rank and percent abundance in the first round of selection were determined (Supplementary Table S1).

In order to identify candidate proteins corresponding to the most commonly selected peptides, we performed BLAST queries with the top-ranked peptide sequences. Because peptides were short and polyclonal serum from ovarian cancer patients almost certainly includes antibodies that are specific for non-TAAs, we limited queries to human proteins (nonredundant database). We were particularly interested in peptide DISGTNTSRA, the 16th-ranked hit in our screen, which was identified in our BLAST analysis as having sequence similarity to CA125/MUC16, a well-established ovarian cancer marker. Using NCBI BLAST, we identified a number of positions at which the DISGTNTSRA peptide aligns to CA125/MUC16 (Supplementary Table S2). These alignments map primarily to the highly glycosylated N-terminal domain (Fig. 2).

MS2-DISGTNTSRA is a peptide mimic of CA125

To investigate whether DISGTNTSRA was an immunologic mimic of CA125/MUC16, we generated VLPs displaying the DISGTNTSRA peptide (MS2-DISGTNTSRA), immunized BALB/c mice, and assessed their serum for reactivity to purified human CA125 by ELISA. Sera of mice immunized with MS2-DISGTNTSRA showed significantly higher reactivity to purified soluble human CA125 than mice immunized with control MS2-VLPs (Fig. 3). Thus, antibodies raised to the DISGTNTSRA peptide can cross-react with soluble CA125. However, flow cytometric analysis of antibodies from mice immunized with MS2-DISGTNTSRA showed no detectable binding to membrane-bound CA125 on the surface of the ovarian cancer cell line OVCAR-3 (data not shown).

Human plasma reactivity to DISGTNTSRA

Having found that deep sequence–coupled biopanning with ovarian cancer patient plasma identified a CA125 mimic, we were interested in investigating the extent to which ovarian cancer patients have antibodies to DISGTNTSRA and CA125. First, we determined whether plasma reactivity to DISGTNTSRA differed between ovarian cancer patients and normal individuals. We selected 40 normal and 47 preoperative stage III ovarian cancer patient samples. The ovarian cancer samples included the five patients used for the deep sequence–coupled biopanning. Normal plasma showed significantly higher reactivity to the DISGTNTSRA peptide than ovarian cancer patient plasma (Supplementary Fig. S1). However, a subset of ovarian cancer patients had sera with strong reactivity to DISGTNTSRA. Indeed, the patient DM778, whose sera was used in the biopanning experiment that identified this peptide, showed the highest reactivity to DISGTNTSRA (this patient is denoted by the open circle in Supplementary Fig. S1). Interestingly, this patient also had
normal plasma CA125 levels (Table 1). This led us to hypothesize that patients with anti-DISGTNTSRA or anti-CA125 antibodies would have lower CA125 in their plasma.

In order to test this hypothesis, we identified 99 ovarian cancer patients that had either normal (< 35 IU/mL; n = 33) or elevated (> 35 IU/mL; n = 66) serum CA125 and assessed these samples for anti-DISGTNTSRA antibodies. These samples included patients with stage I, II, or III ovarian cancer (Supplementary Table S3) and were collected at time of diagnosis, prior to treatment. Patient serum CA125 was negatively associated with anti-DISGTNTSRA (Fig. 4A; Spearman rank correlation coefficient: \(r = -0.286, P = 0.004 \)) and patients with elevated serum CA125 had significantly lower anti-DISGTNTSRA than patients with normal serum CA125 (Fig. 4B; Mann–Whitney, \(P = 0.0033 \)). When we separated patients into positive and negative groups based on the median of the ELISA readings, we found that the proportions of patients who were positive for anti-DISGTNTSRA with normal serum CA125 (n = 19) were significantly different from those patients who were negative for anti-DISGTNTSRA with elevated levels of CA125 (n = 43; Supplementary Table S4, McNemar test, \(P = 0.041 \)). Given the negative association between serum CA125 and anti-DISGTNTSRA in ovarian cancer patients, we used an ELISA to test

![Diagram of deep sequence-coupled biopanning using MS2-VLPs and human serum.](image)

Figure 1. Schematic of deep sequence-coupled biopanning using MS2-VLPs and human serum. Immunoglobulin isolated from pooled ovarian cancer patient plasma or normal plasma was incubated with a mixed MS2-VLP library displaying 6- to 10-amino acid random peptides. Antibody/VLP complexes are pulled down with magnetic Protein G Dynabeads, unbound VLPs are washed away, and bound VLPs are eluted. RT-PCR recovers the coding sequences encapsidated by the VLPs, and cloning and expression of the VLPs result in an enriched library. Biopanning is repeated and the resulting cloned coding sequences are used as template for Ion Torrent deep sequencing.

Figure 2. BLAST alignment hits of DISGTNTSRA against CA125/MUC16. DISGTNTSRA was used as query against the MUC16 protein (reference #: Q8WXI7). Alignments shown contained at least four amino acid identity matches and had no gaps. N-terminal domain, tandem-repeat domain, and C-terminal domain (including membrane proximal region, transmembrane domain, and cytoplasmic domain) are indicated.
whether this was indicative of overall CA125 autoantibody responses in patients. We did not detect a statistically significant correlation between overall CA125 autoantibody responses and serum CA125 (Fig. 4C, Spearman rank correlation coefficient: -0.102, P: 0.315) and patients with elevated serum CA125 did not have significantly different CA125 autoantibody responses from those for patients with normal serum CA125 (Fig. 4D). However, using a cutoff value based on the median of the ELISA readings, we found that the proportion of patients who were positive for CA125 autoantibodies with normal serum CA125 (n = 20) were significantly different from those patients who were negative for CA125 autoantibodies with elevated serum CA125 (n = 38; Supplementary Table S5, McNemar test, P: 0.026). These observations suggest that either the presence of free CA125 in sera is interfering with the detection of CA125-specific antibodies, or potentially that CA125-specific antibodies are protective against CA125+ ovarian cancer.

Associations of antibodies to DISGTNTSRA and CA125 with survival outcomes

Low serum CA125 at time of diagnosis of ovarian cancer is associated with a favorable outcome (9). Knowing that CA125 plasma and antibodies to CA125 or the DISGTNTSRA peptide mimic were negatively correlated, we next wanted to investigate whether there was a correlation between ovarian cancer patient reactivity to CA125 or DISGTNTSRA and patient survival. We generated Kaplan–Meier survival curves for our patient samples by stratifying based on normal (< 35 IU/mL) or elevated (> 35 IU/mL) CA125 in plasma. We did not have survival data on all 99 patients, so our sample set was limited to only 60 patients. Similar to data previously shown with these samples (9), preoperative elevated serum CA125 was associated with decreased survival in ovarian cancer patients (Supplementary Fig. S2 and Table 2). We also generated Kaplan–Meier survival curves by stratifying based on positive versus negative CA125 autoantibodies and DISGTNTSRA antibodies. Although the median survival time of patients with CA125 autoantibodies was considerably longer than the time for those without (positive: 104 months, negative: 56 months, P: 0.586), this difference was not statistically significant (Supplementary Fig. 2 and Table 2). This was also the case for survival based on anti-DISGTNTSRA status (positive: 104 months, negative: 52 months, P: 0.244; Supplementary Fig. S2 and Table 2). Because patient outcome is strongly associated with stage of disease at diagnosis, and we had very few stage I/II samples, we also assessed survival for ovarian cancer stage III.
patients only \((n = 51) \). Ovarian cancer stage III patients also did not show a statistically significant difference in survival for either DISGTNTSRA or CA125 antibodies (Supplementary Fig. S2 and Table 2, \(P = 0.385, P = 0.454 \), respectively). Given our sample sizes and the number of events, our statistical power is not sufficient to rule out an effect of anti-DISGTNTSRA or CA125 autoantibodies on patient survival.

Normal serum CA125 (<35 IU/mL) at time of diagnosis is a predictor of improved patient outcome \((9) \). We asked whether adding anti-CA125 status would further improve the prediction of patient survival. To this purpose, we divided patients into two groups: (i) patients with normal CA125 and/or positive for CA125 antibodies \((n = 38) \), and (ii) patients with elevated CA125 but not positive for anti-CA125 \((n = 21; \text{ Fig. } 5 \text{ and Table } 2) \). In analyses including all patients (stage I/II and III), but not stage III patients alone, we saw a statistically significant difference in the survival curves of the two groups (Fig. 5, Table 2, \(P = 0.034 \)). These data suggest that assessing patient antibodies to CA125 at the time of diagnosis may provide additional predictive value for survival.

Discussion

Here, we report a novel application of the MS2-VLP affinity selection technology for the identification of candidate ovarian cancer antigens. Coupling next-generation sequencing with iterative biopanning, we examined epitopes recognized by a complex mixture of antibodies in human plasma. We show the feasibility of using this approach for identifying anti-TAAs in ovarian cancer and identified an interesting target using publicly available bioinformatics tools. We identified a peptide, DISGTNTSRA, which showed sequence similarity at a number of positions to CA125/MUC16, we confirmed that DISGTNTSRA is indeed a peptide mimic of CA125, and we showed that reactivity of ovarian cancer patient plasma to this peptide and CA125 was inversely correlated with CA125 plasma levels at time of diagnosis.

Affinity selection has been used to identify both linear and conformational epitopes of mAbs. However, its utility for comprehensively examining epitopes recognized by complex mixtures of antibodies (polyclonal serum) is technically limiting. Next-generation sequencing technologies can expand the capability of the traditional affinity selection approach \((14–18) \). One other recent report has described the use of deep sequence–coupled affinity selection for interrogating the antibody response from polyclonal serum, using polyclonal serum from HIV-infected individuals in affinity selection with filamentous phage and Illumina sequencing \((17) \). A similar approach was recently used by Larman and colleagues, who performed iterative biopanning against filamentous phage libraries with cerebrospinal fluid-derived IgG and used Illumina sequencing to investigate the selectant populations \((14) \). Interrogating polyclonal sera for antibody specificity using phage-display technologies was also recently reported by Xu and colleagues, who used phage-displayed human virus-associated peptides to characterize the virus exposure history of humans with a very small volume of blood \((19) \). Our approach is similar in that we can use phage VLPs to identify anti-TAAs from small volumes of sera.

![Figure 5](cancerimmunolres.aacrjournals.org)
Anti-CA125 Antibodies in Ovarian Cancer Patients

expands the use of deep sequence–coupled biopanning of phase-displayed peptides for the identification of TAs in cancer.

There has been interest in therapeutically targeting CA125 in ovarian cancer because (i) it is expressed in >95% of all nonmucinous advanced-stage epithelial ovarian cancers, (ii) it may contribute to evasion of antitumor immunity, and (iii) it may be involved in seeding of the peritoneum and metastasis. Several mAbs targeting CA125 are being tested for therapeutic efficacy in patients, but, as observed with oregovomab (a mAb that targets CA125), passive immunization may not be sufficient (20, 21). An active immunization approach against CA125 could be more potent. Our data suggest that patients who naturally develop an antibody response against CA125 have lower plasma CA125. This finding provides support for the immunogenicity of CA125 itself and the activity of these antibodies for decreasing serum CA125 levels.

A recent study shows significantly lower preoperative serum CA125 in ovarian cancer patients with a history of puerperal mastitis, and significantly higher anti-CA125 antibodies in healthy control subjects (22). Limitations on the samples available in that study did not allow the authors to directly investigate the preoperative levels of anti-CA125 for ovarian cancer patients who had a history of puerperal mastitis. The data we present here supports the hypothesis of the authors of that study, who suggest that key reproductive events (such as puerperal mastitis) may lower ovarian cancer risk by inducing immune reactions to mucins (such as CA125/MUC16) and could be detected by assessing for elevated concentrations of antibodies to CA125. In our study, we showed statistically significant association between ovarian cancer patients with normal or elevated serum CA125 and their autoantibodies to CA125, and an interesting trend toward better survival in patients with either low serum CA125 or anti-CA125 responses. This may indicate that anti-CA125 antibodies are directly protective against ovarian cancer, or it may be a surrogate marker of an overall increased antitumor immune response. However, it would be important to rule out simple competition in the ELISA format by free CA125 in serum.

Several prior studies have detected CA125 autoantibodies in ovarian cancer patients. Taylor and colleagues (23) detected CA125 autoantibodies in advanced ovarian cancer patients, but did not examine whether these antibodies were correlated with survival. Budiu and colleagues (24) measured CA125 antibodies in a cohort of 28 ovarian cancer patients that were treated intraperitoneally with IL2 after completing chemotherapy, but neither CA125 nor CA125 autoantibodies were significantly associated with a clinical response to a platinum/taxane regimen or overall survival. Although we did not detect a statistically significant survival difference between patients based on their anti-DISGTNTSRA or CA125 autoantibody status, the association between anti-DISGTNTSRA antibodies and serum CA125 suggests a possible mechanism for variation in CA125 levels among ovarian cancer patients, whereby patients with CA125 autoantibodies have less serum CA125 due to antibody-mediated immune clearance of CA125, by direct killing of ovarian cancer cells via antibody-dependent cytotoxicity and reduced tumor burden (or both). The status of anti-CA125 response in these patients may be of prognostic value when combined with CA125 status, as shown in Fig. 5. In our analysis we used the median of the ELISA values for anti-DISGTNTSRA and anti-CA125 in order to dichotomize into positive and negative patients for these antibodies. However, given the low statistical power of our analysis, future studies should investigate a larger set of samples in order to assess what if any values of anti-DISGTNTSRA and anti-CA125 have relevance for prognosis of ovarian cancer patients.

Our data suggest that prophylactic anti-CA125 responses may be protective against ovarian cancer. If patients with CA125 autoantibodies have a better prognosis, then it follows that eliciting similar antibodies through an active immunization strategy may provide an advantage for women at high risk of ovarian cancer. Indeed, the reported lowered risk for ovarian cancer in women with CA125 antibodies supports this hypothesis (22). MS2-DISGTNTSRA is just one candidate antigen that may elicit such prophylactic CA125 antibodies in vivo. Further, VLPs typically induce a more balanced response than the Th2-dominant response to alum-adjuvanted antigens, including oregovomab, and this may be important for effective antibody-dependent cell-mediated cytotoxicity against ovarian cancer.

In this report, we identified a unique epitope of CA125. The DISGTNTSRA epitope had multiple positions for possible alignment to the CA125/MUC16 protein (Supplementary Table S2 and Fig. 2). The DISGTNTSRA peptide does not appear to correspond with the binding site of any currently known anti-CA125 mAb (25). This suggests that the epitopes targeted by CA125 autoantibodies in ovarian cancer patients could be very different from those elicited artificially in mice. Although we showed that MS2-DISGTNTSRA was able to elicit antibodies in mice that bind to purified CA125 by ELISA (Fig. 3), we were unable to show binding of these mouse sera to the CA125+ ovarian cancer cell line OVCAR3 by flow cytometry (data not shown). This result may have resulted from the low avidity of the antibody in the mouse sera or it could be that the antibodies elicited by MS2-DISGTNTSRA recognize a buried epitope of CA125 presented on cells, e.g., by glycosylation. The structure CA125/MUC16 and the importance of glycosylation are poorly understood, including if there are distinct structural features of the membrane-bound versus soluble CA125. It may be that the DISGTNTSRA epitope of CA125/MUC16 is only exposed on soluble CA125.

It is interesting to note that our identification of DISGTNTSRA seemed to be driven largely by a single ovarian cancer patient (DM778) from the pool of five that were chosen. This sample showed high reactivity to DISGTNTSRA and CA125 and was the only sample included in our pool of five that had normal serum CA125, although not by design (Table 1). This indicates that, although we sought to limit the importance of intrasample variation by pooling samples for the deep sequence–coupled iterative biopanning protocol, individual samples can drive the outcome of this protocol and should be taken into account in future use of this technology.

In summary, we present here a novel deep sequence–coupled VLP-based affinity selection technology for identifying anti-TAA responses in a polyclonal serum sample. By coupling next-generation sequencing technology with the MS2-VLP affinity selection platform, we expand the opportunities for understanding the antibody response in cancer as well as infectious disease and autoimmunity. Additionally, we present data suggesting a role for CA125 antibody responses in ovarian cancer patient outcome. These data support exploration of active immunization approaches targeting CA125 in ovarian cancer patients, either in combination with current treatment strategies, prophylactically for women at high risk for ovarian cancer, or to prevent or delay recurrence in the setting of minimal residual disease.
Disclosure of Potential Conflicts of Interest

K.M. Frietze was a consultant at Agilvax, Inc. D.S. Peabody reports receiving a commercial research grant from Agilvax, has ownership interest (including patents) in Agilvax, and is a consultant/advisory board member for the same. B. Chackerian has ownership interest (including patents) in Agilvax. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Concept and design: K.M. Frietze, R.B.S. Roden, D.S. Peabody, B. Chackerian

Development of methodology: K.M. Frietze, D.S. Peabody, B. Chackerian

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): K.M. Frietze, B. Chackerian

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): K.M. Frietze, R.B.S. Roden, J.-H. Lee, Y. Shi, B. Chackerian

Writing, review, and/or revision of the manuscript: K.M. Frietze, R.B.S. Roden, J.-H. Lee, Y. Shi, B. Chackerian

References

Identification of Anti-CA125 Antibody Responses in Ovarian Cancer Patients by a Novel Deep Sequence–Coupled Biopanning Platform

Updated version
Access the most recent version of this article at:
doi:10.1158/2326-6066.CIR-15-0165

Supplementary Material
Access the most recent supplemental material at:
http://cancerimmunolres.aacrjournals.org/content/suppl/2015/11/20/2326-6066.CIR-15-0165.DC1

Cited articles
This article cites 25 articles, 5 of which you can access for free at:
http://cancerimmunolres.aacrjournals.org/content/4/2/157.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.