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Abstract

Invariant natural killer T (iNKT) cells are a unique popu-
lation of T lymphocytes, which lie at the interface between the
innate and adaptive immune systems, and are important
mediators of immune responses and tumor surveillance. iNKT
cells recognize lipid antigens in a CD1d-dependent manner;
their subsequent activation results in a rapid and specific
downstream response, which enhances both innate and adap-
tive immunity. The capacity of iNKT cells to modify the
immune microenvironment influences the ability of the host
to control tumor growth, making them an important popu-

lation to be harnessed in the clinic for the development of
anticancer therapeutics. Indeed, the identification of strong
iNKT-cell agonists, such as a-galactosylceramide (a-GalCer)
and its analogues, has led to the development of synthetic
lipids that have shown potential in vaccination and treatment
against cancers. In this Masters of Immunology article, we
discuss these latest findings and summarize the major dis-
coveries in iNKT-cell biology, which have enabled the design
of potent strategies for immune-mediated tumor destruction.
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Introduction
Invariant natural killer T (iNKT) cells represent a distinct pop-

ulation of T lymphocytes, which have features of both conven-
tional T cells and natural killer (NK) cells (1). As a result of their

unique ability to recognize CD1d-bound endogenous lipid
antigens, iNKT cells have a constitutive memory phenotype and
are capable of rapidly responding to stimulation, producing a
broad range of cytokines. In addition, through direct interac-
tions, in particular via CD1d and CD40L–CD40 signaling, as
well as indirect interactions with other immune cells, iNKT cells
are capable of maturing dendritic cells (DC) and activating B
cells, and thus are crucial in enhancing antigen-specific B-cell and
T-cell responses (2). The use of iNKT-cell–deficient mice and
iNKT-cell–specific adjuvants has provided compelling evidence
demonstrating that iNKT cells play an important role in mount-
ing an antitumor response. Indeed, the importance of iNKT cells
in tumor immunosurveillance is further emphasized with the
observation that reduced iNKT-cell numbers and function have
been documented in a large number of cancer patients, including
in patients with progressive malignant multiple myeloma (3),
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prostate cancer (4), and a broad range of other solid malignan-
cies (5). In this Masters of Immunology article, we discuss the
role of iNKT cells in enhancing tumor immunity and introduce
clinical strategies that are currently being considered to harness
iNKT cells in cancer patients to encourage stronger anticancer
immune responses.

NKT Cells: Classification and Subsets
In contrast with conventional T cells, which recognize pro-

tein-derived antigens presented by major histocompatibility
complex (MHC) class I and class II molecules, the T-cell
receptors (TCR) on NKT cells recognize both exogenous and
endogenous lipids presented in the context of the nonpoly-
morphic, MHC class I–like CD1d molecules (6, 7). NKT-cell
development requires thymic selection, similar to that of con-
ventional T cells, which results in the release and expansion of a
population of cells with the ability for specific antigen recog-
nition, but also with a range of innate immune functions (2).
Analysis of the phenotype and cytokine profile of NKT cells has
led to the identification of two main NKT-cell subsets: iNKT
cells, otherwise known as type I NKT cells, and diverse NKT
cells, which are more commonly called type II NKT cells (8).
iNKT cells express an antigen-specific TCR composed of a semi-
invariant a-chain (Va14-Ja18 in mice and Va24-Ja18 in
humans) paired with a restricted repertoire of b-chains (Vb2,
Vb7, and Vb8.2 in mice, or Vb11 in humans; ref. 9). Similarly,
type II NKT cells are CD1d restricted, but in contrast with iNKT
cells, they express a polyclonal TCR repertoire and are more
comparable with the highly diverse TCRs of conventional CD4þ

and CD8þ T cells (10–12). The importance of antigen presen-
tation by CD1d molecules in NKT-cell activation and develop-
ment was highlighted by the observation that Cd1d�/� mice
lack both iNKT cells and type II NKT cells (13–15). Indeed, to
distinguish the roles of the two NKT populations, researchers
commonly compare the phenotype of Cd1d�/� mice (13–15)
with that of Ja18�/� mice (16), which lack only iNKT cells.
Notably, recent studies have highlighted that Ja18�/� mice
exhibit additional defects in the T-cell repertoire (17); therefore,
the iNKT-cell relevance of results obtained using Ja18�/� mice
should be considered in the context of these findings. The
heterogeneity of Va14þ iNKT cells has been further appreciated
with the identification of several subsets of iNKT cells with
distinct developmental and functional properties (18–21).
Indeed, a distinct Va50-Ja10 iNKT-cell subset was identified,
which, although absent in Cd1d�/� mice, was found to be
present in Ja18�/� mice (22); it is clear that considering these
subsets will be critical in order to accurately interpret forth-
coming data.

Although a lack of reagents to monitor type II NKT cells has
slowed down functional and phenotypic analysis of these cells,
access to CD1d tetramers loaded with iNKT-cell agonists has
allowed characterization of the frequency and phenotype of
iNKT cells in both mice and humans (23–25). In mice, iNKT
cells comprise approximately 1% to 3% of the lymphocytes
in the circulation and lymphoid organs, and are unusually
enriched in the liver, where they can comprise up to 30% of
resident lymphocytes (26). Conversely, although found to be
enriched in the adipose tissue and omentum (27), the frequen-
cy of iNKT cells in the human periphery is lower and more
variable than in mice (28).

iNKT Cells Recognize a Diverse Range of
Antigens

Despite their semi-invariant TCRs, iNKT cells are able to
recognize a diverse range of antigens (29). Structural and
functional studies have been fundamental in determining
which features of lipid recognition modulate the potency and
activation of iNKT cells, and importantly, have been crucial in
optimizing the design of iNKT-cell agonists suitable for use in
the clinic (30–36). a-Galactosylceramide (a-GalCer), derived
from the glycosphingolipid extract of the marine sponge Agelas
mauritianus, was the first lipid identified that potently activates
iNKT cells (ref. 37; Fig. 1); the a-linked glycan in a-GalCer has
since been shown to be a structural motif common to many of
the identified a-linked bacterial pathogens, which can directly
and potently activate iNKT cells (38–41). Recently, a b-linked
lipid, Asperamide B, was identified as the first example of a
fungal-derived iNKT-cell agonist (42), although in other mod-
els of fungal infection, iNKT-cell reactivity was shown to be
driven through Dectin-1– and MyD88-mediated upregulation
of IL12 by antigen-presenting cells (APC; ref. 43). In addition to
recognizing synthetic and microbial-derived antigens, iNKT
cells react against CD1dþ APCs in the absence of exogenous
antigens, a feature defined as autoreactivity. iNKT-cell auto-
reactivity underpins the constitutive memory phenotype of
iNKT cells and their ability to be activated during a wide variety
of immune responses, including infections, cancer, and auto-
immunity (44, 45). Although complete elucidation of endog-
enous and exogenous lipids mediating iNKT-cell activation has
been challenging due to poor sensitivity of assays, which are
often unable to detect low lipid concentrations purified from
cellular extracts and pathogens, seminal studies in the last year
identified the gut mucosa (46–48) and alternative enzymatic
pathways in mammals (49, 50) as potential sources of exog-
enous and endogenous iNKT-cell lipid agonists. Further inves-
tigations are warranted to fully characterize these lipids, which
will be highly valuable for understanding the role of iNKT cells
in cancers, where endogenous lipids undoubtedly play a key
role in triggering the immune response.

iNKT-cell Activation and Downstream
Signaling
Activation of iNKT cells can occur directly or indirectly

Direct activation of iNKT cells involves the endocytosis of
glycolipid antigens by APCs and their presentation to iNKT cells
via CD1d–antigen complexes. In addition to direct iNKT-cell
activation by exogenous lipid agonists, we and others have
shown that signaling events downstream of Toll-like receptors
(TLR; refs. 44, 45, 51), inflammasome components NOD1 and
NOD2 (52), and the formyl peptide receptor 2 (FPR2), which
recognizes Serum Amyloid A-1 (53), result in the loading of
CD1d molecules expressed on APCs with endogenous lipid
antigens, and subsequent iNKT-cell activation. In addition,
because a number of tumor cells express CD1d (3, 54–57), it
is hypothesized that tumor cells may also present endogenous
lipids to iNKT cells directly, although to date the identity of
such tumor cell–derived endogenous iNKT-cell agonists
remains contentious. Importantly, CD1d-dependent activation
of iNKT cells triggers release of IFNg and IL4, as well as of a
diverse range of other cytokines, including IL2, IL5, IL6, IL10,
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IL17, IL21, TNFa, TGFb, and granulocyte-macrophage colony
stimulating factor (GM-CSF; refs. 1, 58–60), in addition to
chemokines, such as RANTES, Eotaxin, MIP-1a, and MIP-1b
(61). IFNg and IL4 transcription is activated during iNKT-cell
thymic development, and preformed IL4 mRNA in the cyto-
plasm allows for rapid responses upon antigen stimulation (62,
63). In concert with cytokine release, activation of iNKT cells
through TCR stimulation augments the bidirectional cross-talk
with DCs in a CD40/CD40L and CD1d-dependent manner; this
interaction promotes the maturation, activation, and the upre-
gulation of costimulatory receptors, such as CD80 and CD86,
on DCs, as well as the release of IL12. Interestingly, depending
on the lipid antigen presented, iNKT cells may also modulate
upregulation of inhibitory molecules (such as PD-L1 and
PD-L2) on CD8aþ DCs, which may be the mechanism behind
the Th2-polarizing effect of some iNKT-cell agonists (64). As a
result of direct interaction with iNKT cells, DCs can prime
antigen-specific CD4þ and CD8þ T cells (65–67). Licensing by
iNKT cells of CD8aþ DCs results in the secretion of the
chemokine CCL17, which attracts na€�ve CD8þ T cells expressing
the chemokine receptor CCR4 (68). iNKT cells can also directly
provide B-cell help through CD1d expression on B cells (69,
70). This ability to prime the adaptive immune response
indicates that iNKT-cell agonists could be used in the clinic
to harness iNKT cells, where they have previously been shown

to have adjuvant effects in combination with a number of
vaccines (71).

iNKT cells can be activated via soluble factors released by
TLR-activated DCs (indirect NKT-cell activation), such as type I
IFN, IL12, and IL18 (44, 45, 51, 72–75), or by costimulatory
molecules such as OX40/OX40L (76).

Structural and functional analyses of the interaction between
the iNKT TCRs andCD1dmolecules loadedwith endogenous and
exogenous iNKT-cell agonists are of importance to characterize
further how the quality of iNKT-cell activation can be modulated
by the binding affinity, concentration, hydrophobicity, and sta-
bility of glycolipid-CD1d complexes (refs. 31, 32, 77, 78; Fig. 1).
Indeed, low antigen concentration or weak binding affinity of
CD1d–lipid complexes to the iNKT TCRs induces GM-CSF and
IL13, whereas a higher antigen concentration or higher binding
affinity of CD1d–lipid complexes induces IL4 and IFNg , along
with increased expression of GM-CSF and IL13 (79). In line with
this, the lipid C-glycoside, an analogue of a-GalCer, has a weak
binding affinity to the iNKT-cell TCR, but as a result of the
formation of a stable complex with CD1d, and thus its extended
survival in vivo, is still able to induce IFNg production from
iNKT cells (80). These mechanisms demonstrate how antigenic
activation of iNKT cells can enhance both cell-mediated and
humoral immunity through direct or indirect interaction with
other immune cells.
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Figure 1.
Structure and interactions of the
prototypic iNKT-cell agonist a-GalCer
with a CD1d molecule and the NKT
TCR. A, the biochemical structure of
the prototypic iNKT-cell agonist,
a-GalCer. B, the crystal structure of
a-GalCer (red) loaded onto human
CD1d molecules (gray) and binding to
the iNKT-cell TCR (yellow/orange).
Figure was generated using PyMOL
and the Protein Data Bank using
accession number 2PO6 from ref. 78,
and adapted with permission from
Macmillan Publishers Ltd. Nature (78),
copyright 2007. The headgroup of the
lipid is exposed and allows for
interaction with the iNKT-cell TCR.
Modifications to the lipid head-group,
tail length, or saturation affect the
ability of iNKT-cell agonists to activate
iNKT cells (31), a property that has
been used to optimize anticancer
therapeutics. Figure 1 was generated
by Hemza Ghadbane of the
Weatherall Institute of Molecular
Medicine and the University of Oxford.
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iNKT Cells in Tumor Immunity
The initial observation that a-GalCer injected into mice

could protect against tumor progression (81, 82), led to the
subsequent discovery that a-GalCer specifically activated iNKT
cells in a CD1d-resticted manner (37). In addition to exerting
a protective role in a range of different tumor models when
in vivo activated with a-GalCer (83) or IL12 (16), iNKT cells also
play a critical role during tumor immunosurveillance. Indeed,
following adoptive transfer of iNKT cells into Ja18�/� mice,
Crowe and colleagues (84) demonstrated their ability to protect
mice from methylcholanthrene-induced sarcomas via direct
interaction of the iNKT TCR with CD1d molecules, confirming
and extending previous observations by the same group using
methylcholanthrene tumor models (83). The role of iNKT cells
in tumor immunosurveillance has been confirmed in other
murine studies, including a p53-deficiency model (85) and a
TRAMP model (86), all of which showed enhanced tumor
growth in iNKT-cell–deficient mice (Ja18�/� mice or Cd1d�/�

mice), as compared with wild-type animals. Notably, not all
iNKT-cell subsets are equally protective, as rejection of MCA-1
sarcomas and B16F10 melanomas was mediated exclusively by
the liver-derived CD4� iNKT-cell subset (87).

Activation of iNKT cells during immunosurveillance can
occur either directly, through presentation of self-lipids by
CD1d-positive tumors, or indirectly, by cross-presentation of
tumor lipids by APCs (ref. 88; Fig. 2). Evidence for direct
presentation stems from the observation that overexpression
of CD1d by the B-cell lymphoma NS0 induces cytokine pro-
duction by iNKT cells and iNKT cell–dependent lysis (89).
Consistent with these findings, in a mouse model of breast
cancer metastases, tumor downregulation of CD1d molecules
inhibits iNKT-mediated antitumor immunity and promotes

metastatic breast cancer progression (57). Furthermore, human
iNKT cells were found to recognize and kill CD1dþ osteosar-
coma cells, but not CD1d� osteoblasts, confirming the CD1d
restriction of iNKT cell–dependent cytotoxicity (90). Notably,
these studies and others (91, 92) have confirmed iNKT cell–
dependent cytotoxicity against CD1dþ tumor cell lines without
pulsing with a-GalCer, underscoring the notion that the iNKT-
cell TCR can interact with endogenous antigenic lipids
expressed by human and mouse tumor cells, which can lead
to direct iNKT-cell activation (90).

CD1d is preferentially expressed in hematopoietic cells (93),
especially those of myelomonocytic and B-cell lineages, and
accordingly, malignancies originating from such tissues have also
been found to be CD1d-positive (3, 54, 55, 89, 94, 95). Inter-
estingly, CD1d expression has also been found on select solid
tumors, such as prostate cancer (4, 56), breast cancer (57), renal
cell carcinoma (96), and specific nervous system tumors, includ-
ing malignant glioma (97) and pediatric medulloblastoma (98);
however, many other human and murine solid tumors are gen-
erally thought to be CD1d-negative, or to downregulate CD1d
molecules. Lack of CD1d expression in tumors results in their lack
of recognition by iNKT cells, and has, in some models, been
correlated with tumor progression. It remains to be determined,
however, whether the lack of detection of CD1dmolecules on the
surface of such tumors could stem from suboptimal antibody
staining or the local downregulation of CD1d, and thus whether
these tumors are able to present endogenous lipid is not yet
defined. Given that CD1d molecules are widely expressed by
normal cells, it remains unclear as to whether a different set of
unidentified self-iNKT-cell agonists can be presented by CD1d
molecules expressed by transformed cells, as compared with
normal cells. Furthermore, although it is commonly accepted
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Figure 2.
Antitumor activities of iNKT cells. A,
iNKT cells can recognize endogenous
lipids presented by CD1dmolecules on
tumor cells and subsequently
eliminate tumor cells directly through
iNKT cell–mediated lysis. B, in the
absence of CD1d expression on tumor
cells, iNKT cellsmay become activated
in response to CD1d-expressing or
TLR-activated APC. Bidirectional
activation of iNKT cells and APCs
promotes NK-cell activation and the
activation of the tumor-specific T-cell
response, thereby indirectlymediating
tumor-cell killing.

McEwen-Smith et al.

Cancer Immunol Res; 3(5) May 2015 Cancer Immunology Research428

on March 24, 2019. © 2015 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

http://cancerimmunolres.aacrjournals.org/


that endogenous lipids are likely to be responsible for activating
iNKT cells in the inflammatory tumor microenvironment, the
mechanisms by which iNKT cells are activated during tumor
growth remain elusive. Further investigations are warranted to
elucidate these findings.

A hypothesis: the role of the endoplasmic reticulum-stress
response in modulating iNKT-mediated tumor immunity

In nonsterile disease models, pathogen-associated molecu-
lar patterns (PAMP) act as TLR agonists, and through the up-
regulation of endogenous ligand presentation and the release
of soluble factors by APCs, have been shown to enhance
the activation of iNKT cells (44, 45, 51). In light of this, we
put forward the hypothesis that a similar mechanism may be
involved in iNKT-mediated tumor surveillance. Indeed in
recent years, a new concept of "immunogenic cell death"
(99) has emerged, which links endoplasmic reticulum (ER)
stress with the release of damage-associated molecular pat-
terns (DAMP) during anticancer therapy. Through recognition
by pattern recognition receptors (PRR), such as TLR4, the
release of DAMPs by dying cancer cells results in the activation
of a cancer-specific immune response (100). Although it
remains unclear whether these DAMPs can influence iNKT-
cell antitumor responses, in support of this idea, we and others
have shown that stimulation of TLR4 on APCs can enhance
presentation of iNKT-cell agonists and stimulate iNKT-cell
activation (44, 45, 101). In line with this, the unfolded protein
response (UPR), which is also triggered by ER stress, increases
the activity of the ER lipid transfer protein microsomal tri-
glyceride transfer protein (MTP; ref. 102), which is involved in
CD1d loading (103, 104). Finally, an additional UPR com-
ponent, XBP-1, which modulates phospholipid synthesis and
is required for ER membrane expansion under ER stress (105),
has been shown to positively control hepatic lipogenesis at
basal levels (106). Disruption of XBP-1 led to decreased fatty
acids and sterols in primary hepatocytes, possibly by directly
transactivating key genes in this metabolic pathway (106).

As well as tumor-intrinsic ER-stress signaling, which promotes
tumor survival and proliferation, the tumor-cell UPR can func-
tion in a cell-extrinsic manner, transmitting ER stress to tumor-
infiltrating myeloid cells, in a mechanism termed transmissible
ER stress (TERS; ref. 107). Although not yet assessed in the context
of cancer, ER stress was correlated with abnormalities in the
function and frequency of NKT cells in hepatic steatosis, where
it was suggested that ER disruption might lead to dysregulation
of iNKT-mediated innate immunity through decreased expres-
sion of membrane CD1d, resulting in reduced iNKT-cell activa-
tion (108). Although, in this model, ER stress had a negative
effect on iNKT-cell activation, in light of the reported effects of
ER stress on lipid metabolism and CD1d loading discussed
above, further experimentation needs to be performed to dissect
whether changes in lipid metabolism due to ER stress in cancer
cells may modulate iNKT-cell activity.

iNKT cell–mediated adjuvant effects on innate and adaptive
immunity against cancer in mice

The ability of iNKT cells to activate antitumor immune
responses can be jump started by using exogenous iNKT-cells
agonists, such as the prototypic ligand a-GalCer (109–112).
Injection of a-GalCer was found to inhibit tumor metastases
and increase survival in a range of murine cancer models,

including models of B16 tumor challenge (109), spontaneous
sarcomas in p53�/� mice (113), and the colon carcinoma
model C26GM (114). In line with this, injection of
a-GalCer–pulsed DCs (115), or intravenous (i.v.) administra-
tion of either live or irradiated B16 tumor cells loaded with
a-GalCer (116), was shown to elicit an innate iNKT- and NK-
cell response that rejects the tumor. The a-GalCer–mediated
antitumor activity of iNKT cells has since been shown to be
dependent on IFNg production and NK cells (110, 117, 118),
DC maturation, activation, and IL12 release, and ultimately the
activation of CD8þ cytotoxic T cells, CD4þ Th1 cells, and
gamma-delta (gd) T cells that further target and kill tumor
cells (65, 116, 119). Indeed, administration of a-GalCer into
mice injected with a T-cell lymphoma enhanced the generation
of tumor-specific cytotoxic T cells in an IFNg- and NK-cell–
dependent manner (120). This pathway was further empha-
sized in murine models of lung and liver metastasis, where the
antimetastatic activity of a-GalCer was dependent on IL12- and
IL18-mediated enhancement of IFNg production by iNKT and
NK cells (118).

Upon activation, both murine and human iNKT cells can
exhibit potent cytotoxic functions to promote the killing of tumor
cells, such as acute myeloid leukemia, through the expression of
tumor necrosis factor–related apoptosis-inducing ligand (TRAIL;
ref. 121). This observation was also confirmed with iNKT cells
from patients with malignant melanoma, whereby upon a-Gal-
Cer/DC activation, the patient-derived iNKT cells displayed
potent perforin-dependent cytotoxic activity against a range of
tumor cell lines (122). Interestingly, the transfer of perforin-
deficient iNKT cells into Ja18�/� mice with methylcholan-
threne-induced tumors restored tumor resistance, suggesting
that in this model, direct perforin-dependent tumor lysis by
iNKT cells is not critical (84). Taken together, these observations
imply that both direct and indirect mechanisms of iNKT-cells
activation play a key critical role in iNKT cell–mediated tumor
immunosurveillance (88, 116).

Studies aimed at enhancing iNKT cell–mediated antitumor
immunity have shown that the use of soluble a-GalCer leads to
potent stimulation of iNKT-cell subsets and may result in iNKT-
cell overactivation and anergy (123, 124). Given these considera-
tions, the search for efficient iNKT agonists with functional
differences compared with a-GalCer is an ongoing goal in the
field, which attracts the work of many laboratories. Indeed, in
recent years, many a-GalCer analogues have been formulated
that exhibit different properties, including optimized cytokine
induction profiles, which are aimed at targeting specific subsets of
iNKT cells in a number of different clinical settings (125–133).

Harnessing iNKT cells to optimize vaccination strategies in
cancer patients
Activity of iNKT cells in cancer patients. A large number of
preclinical and clinical trials have been performed to investi-
gate whether activation of iNKT cells could be a therapeutically
beneficial approach in human patients suffering from cancer
and other infectious diseases. Reduced iNKT-cell frequency and
function has been observed in patients with hematologic can-
cers (3, 134) and a range of solid tumors (4, 135), as compared
with that of healthy volunteers, independent of tumor type and
tumor load. In line with these observations, reduced iNKT-cell
frequency was shown to correlate with poor overall survival in
acute myeloid leukemia (136), and head and neck squamous
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cell carcinoma (137), whereas increased numbers of intratumor
or circulating iNKT cells have been associated with improved
prognosis in colon cancer, prostate cancer, hematologic malig-
nancies, and neuroblastoma (138–140). Whether immune-cell
subsets found in peripheral blood are accurate representative of
systemic cancer immunity in humans remains to be established
in all cancer models (141); relative NKT-cell deficiencies have,
however, also been observed locally in solid tumors and the
surrounding tissues, such as in neuroblastoma (142) and
colorectal cancer (27). Interestingly, other investigators have
reported elevated iNKT-cell frequency in some tumors (143,
144); and increased iNKT-cell frequency in the microenviron-
ment of colorectal cancers is thought to be a positive prognostic
indicator (138, 145). The high variability in iNKT-cell frequen-
cies in humans, in addition to the defective numbers shown in
cancer and other diseases, reduces the effectiveness of targeting
iNKT cells in these individuals. Indeed, studies have reported
that iNKT cell–based treatments may only be beneficial for
patients with high iNKT-cell frequency (146). To overcome
these limitations, universal efforts have been directed at opti-
mizing the development of synthetic iNKT-cell agonists to
enhance iNKT-cell activation and antitumor function.

iNKT Cell-Based Cancer Immunotherapy
Three main iNKT cells–directed therapeutics have been

exploited thus far; these include, but are not limited to, admin-
istration of iNKT cell–activating ligands (all human studies
described to date have used a-GalCer), administration of APCs
pulsed with a-GalCer, transfer of ex vivo–expanded and/or acti-
vated iNKT cells, and finally a combination of these methods.

Intravenous injection of a-GalCer
a-GalCer remains the best-characterized iNKT agonist in tumor

immunity todate. Althoughpromisingdatausing this agonisthave
been generated in murine models and in vitro, the fundamental
question remainswhether iNKT-cell activation by select agonists is
relevant in the clinic. The first clinical study of a-GalCer used
repeated i.v. injection ofa-GalCer at varying doses in patients with
solid tumors (147). No dose-limiting toxicity was observed, sug-
gesting that activation of iNKT cells through i.v. injection of
a-GalCer is a safe, well-tolerated treatment in humans. Although
iNKT-cell numbers appeared to decrease in the periphery, likely
resulting from downregulation of the TCR following iNKT-cell
activation (148),Giaccone and colleagues (147)observed elevated
serum levels of iNKT cell–associated cytokines, including TNFa
andGM-CSF, and disease stabilization for amedian of 123 days in
7 of 24 patients. Similar to murine studies in which injection of
soluble, but not cell-associateda-GalCer, leads to iNKT-cell anergy
(123) in a PD-1/PD-L1–dependent manner (149), follow-up
studies in humans identified a-GalCer–induced iNKT-cell anergy
using this administration method (150).

Adoptive transfer of a-GalCer–pulsed APCs
Studies with murine tumor models demonstrated that coin-

jection of a-GalCer and tumor antigens (65), or alternatively
administration of a-GalCer–pulsed DCs (151), induced pro-
longed cytokine responses as compared with injection of soluble
a-GalCer. Although the reasoning behind the differing immune
responses is unclear, it has been hypothesized that the type of
APC and method of administration could play an important

role. Indeed, whereas i.v. injection of pulsed DCs induced a
strong cytokine response, a-GalCer–pulsed DCs injected subcu-
taneously (s.c.) in mice did not stimulate a particularly effective
iNKT-cell response (151). In addition, DCs were found to stim-
ulate a stronger iNKT-cell response in comparison with B cells
(152). A large number of clinical trials have since used ex vivo–
generated, or isolated APCs pulsed with a-GalCer, which has thus
far been shown to be safe and well tolerated.

The first phase I trial reported used i.v. administration of
a-GalCer–pulsed monocyte-derived DCs, which were given at
two weekly intervals to patients with metastatic tumors (153).
Although activation of iNKT cells increased serum levels of
cytokines, including IFNg and IL12, and the transactivation of
both T and NK cells, only 2 of the 12 patients enrolled exhibited a
decrease in serum tumor markers, indicating minimal efficacy of
this treatment (153). Two later studies using a-GalCer–pulsed,
monocyte-derived DCs were published; the first, using weekly i.v.
injections of IL2-cultured DCs in patients with advanced or
recurrent non–small cell lung cancer (NSCLC), demonstrated
an expansion of iNKT-cell frequency and elevated IFNg levels by
PCR analysis (150). IFNg ceased to be detected onwards of the
second injection, possibly consistent with the onset of iNKT-cell
anergy (150). Comparably, Chang and colleagues (154) reported
that the injection of a-GalCer–pulsed monocyte-derived DCs
also induced elevation of iNKT-cell frequency to greater than
100-fold, as well as higher serum concentrations of IFNg and
IL12. iNKT-cell activation could be seen for up to 6 months in
some patients and was consistent with an increase in the levels
of IL12p40, IP-10, and MIP-1b, and an increase in cytomegalo-
virus-specific CD8þmemory T cells (154). Uchida and colleagues
(155) modified the administration approach by using injection
of a-GalCer–pulsed peripheral blood APCs directly into the
nasal submucosa of patients with head and neck cancer. Elevation
in iNKT-cell numbers and NK cell activation was observed in
approximately half of the patients, and a reduction or stabi-
lization of tumor growth was seen in 6 of 9 patients (155). A
follow-up study demonstrated that administration via the nasal
submucosa was optimal over administration via the oral sub-
mucosa (156); notably, authors also reported that oral adminis-
tration was linked to the expansion of CD4þ CD25þ FoxP3þ

regulatory T cells (156).
More recently, four additional studies were published in which

cancer patients were injected with APCs pulsed with a-GalCer
either i.v. or intradermally (i.d.; refs. 157–160). Injection of APCs
generated in the presence of GM-CSF and IL2 into patients with
NSCLC demonstrated expansion of iNKT cells, and in patients
with elevated level of IFNg , a possible prolongation in survival
was observed, although no partial or complete clinical responses
were detected (160). Elevated IFNg production, as well as expan-
sion and infiltration of iNKT cells, were also observed following
injection of GM-CSF/IL2–generated a-GalCer-pulsed APCs prior
to surgery (158). For patients with cancers of differing origin and
metastatic potential, Nicol and colleagues (157) reported that i.v.
injection of pulsed APCs stimulated antitumor activity both at the
main tumor site and in sites of metastasis; more than half of the
patients showed disease stabilization or a reduction in tumor
mass (157). Finally, treatment of patients withmultiplemyeloma
using the combined regimen of a-GalCer–pulsed APCs and the
immune-modulatory drug lenalidomide elicited elevated IL2 in
the serum, as well as a decrease in tumor-associated monoclonal
immunoglobin levels (M spike; refs. 159, 161). Taken together,
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these findings demonstrate that a-GalCer–pulsed APCs represent
a possible therapeutic strategy to enhance antitumor immunity.
Although further optimization of loading and delivery and a
more detailed understanding of the mechanisms of action are
required, a-GalCer–pulsed APCs show promise for reducing
tumor growth and metastasis.

Adoptive transfer of ex vivo–activated iNKT cells
An alternative strategy to compensate for the decreased iNKT-

cell frequency observed in patients with cancer involves
expanding autologous iNKT-cell populations in vitro. First,
adoptive transfer of in vitro–activated iNKT cells into patients
with NSCLC resulted in in vivo iNKT-cell expansion, down-
stream activation of NK cells and IFNg release (162). Interest-
ingly, the combined transfer of iNKT cells and a-GalCer–pulsed
DCs has been reported to induce substantial antitumor immu-
nity in patients with head and neck squamous cell carcinomas
(163, 164). In these studies, patients demonstrated a partial
response or stabilization of the disease, and in some cases,
tumor regression (163, 164). Optimization of the current
protocols holds high potential in tumor immunotherapy.
Indeed, functionally competent iNKT cells have recently been
differentiated from induced pluripotent stem cells (iPSC) in
mice, which may represent a novel approach to expand iNKT
cells for cancer therapy in humans (165).

Conclusions and Future Perspectives
Murine studies and clinical trials performed to date have

demonstrated that therapies involving the manipulation of
iNKT cells are not only feasible but also appear to be generally
well tolerated by mice and human patients alike, and, in some
cases, induce significant tumor regression, disease stabilization,
or possible prolongation of survival. Many of the approaches
used thus far induce iNKT-cell activation; however, it remains

to be determined which route of administration, APC type, and
dosing interval are the most efficacious. Although preclinical
studies in animal models may help answer these questions,
ultimately, appropriately designed clinical trials in humans will
guide protocol optimization. Our ability to manipulate these
cells in antitumor therapeutics is critically dependent on our
understanding of iNKT-cell biology and of the factors that
activate and regulate these cells; the identification and optimi-
zation of iNKT-cell agonists that can promote Th1 immune
responses without inducing iNKT-cell anergy is of high priority.
Notably, despite the clear ability of exogenously activated iNKT
cells to initiate potent antitumor activity in response to immu-
notherapeutic stimuli, whether this represents a physiologic
role for NKT cells in tumor rejection, and if so, which signaling
cascades are required, remains unclear. In addition, in light of
the identification of developmentally and functionally distinct
subsets of iNKT cells and type II NKT cells, emphasis should be
put on characterizing the roles and interactions of these cells
during immunosurveillance, therefore improving the specificity
of NKT-targeted agonists.
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