The Regulatory Role of Invariant NKT Cells in Tumor Immunity
Rosanna M. McEwen-Smith, Mariolina Salio, and Vincenzo Cerundolo

The Interplay of Immunotherapy and Chemotherapy: Harnessing Potential Synergies
Leisha A. Emens and Gary Middleton

Cancer Immunotherapy Out of the Gate: The 22nd Annual Cancer Research Institute International Immunotherapy Symposium

Virotherapy with a Semliki Forest Virus-Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade
José I. Quetglas, Sara Labiano, M. Ángela Aznar, Eliabet Bolaños, Arantza Azpiliqueta, Inmaculada Rodríguez, Euskada Casales, Alfonso R. Sánchez-Paulete, Víctor Segura, Cristian Smerdou, and Ignacio Melero

Individual Motile CD4+ T Cells Can Participate in Efficient Multikilling through Conjugation to Multiple Tumor Cells
Ivan Liadi, Harjeet Singh, Gabrielle Romain, Nicolas Rey-Villamizar, Amine Merouane, Jay R.T. Adolacion, Pariwot Kebriaei, Helen Huls, Peng Qiu, Badrinath Roysam, Laurence J.N. Cooper, and Navin Varadarajan

Serial Killers and Mass Murderers: Engineered T Cells Are up to the Task
Carl H. June

Individual CD4+ T cells can participate in efficient multikilling through conjugation to multiple tumor cells. Liadi and colleagues used time-lapse microscopy and CD8+ T cells coexpressing TCRs and CARs for different antigens to show that CAR T cells can kill multiple tumor cells; engagement via CAR or TCR did not affect killing kinetics; T cells detached faster when CAR was engaged; and CARs are downregulated over time. See related commentary, p. 470
Arming the Melanoma Sentinel Lymph Node through Local Administration of CpG-B and GM-CSF: Recruitment and Activation of BDCA3/CD141⁺ Dendritic Cells and Enhanced Cross-Presentation

Berbel J.R. Sluijter, Mari F.C.M. van den Hout, Bas D. Koster, Paul A.M. van Leeuwen, Fanke L. Schneiders, Rieneke van de Ven, Barbara G. Molenkamp, Saskia Vosslander, Cornelis L. Verweij, M. Petrousjka van den Tol, Alfonso J.M. van den Eertwegh, Rik J. Scheper, and Tanja D. de Gruijl

Synopsis: Sluijter and colleagues report that intradermal injection of combined CpG/GM-CSF at the primary melanoma excision site prior to removal of sentinel lymph nodes (SLN) led to recruitment of BDCA3⁺ conventional dendritic cell (cDC) precursors from blood and enhanced DC maturation with selective increase of SLN-resident CLEC9A/BDCA3/CD141⁺ cDCs.

Adenosine Receptor 2A Blockade Increases the Efficacy of Anti–PD-1 through Enhanced Antitumor T-cell Responses

Paul A. Beavis, Nicole Milenkovski, Melissa A. Henderson, Liza B. John, Bertrand Allard, Sherene Loi, Michael H. Kershaw, John Stagg, and Phillip K. Darcy

Synopsis: Beavis, Milenkovski, and colleagues reveal that adenosine receptor blockade enhanced anti-PD-1 efficacy against CD73⁺ tumors in two mouse models via augmentation of tumor-infiltrating CD8⁺ T-cell effector function by increasing IFNγ and Granzyme B production and suggest CD73 expression as a biomarker for anti-PD-1 efficacy.

TH2-Polarized CD4⁺ T Cells and Macrophages Limit Efficacy of Radiotherapy

Stephen L. Shiao, Brian Ruffell, David G. DeNardo, Bruce A. Faddegon, Catherine C. Park, and Lisa M. Coussens

Synopsis: Shiao and colleagues report that inhibiting either macrophage recruitment by CSF-1/CSF-1R-blockade, or macrophage polarization by IL4/13 neutralization, delayed tumor growth after radiotherapy or chemotherapy, demonstrating that macrophage antagonists improve responses to cytotoxic therapies.

STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFβ Receptor Blockade

Todd A. Triplett, Christopher G. Tucker, Kendra C. Triplett, Zefora Alderman, Libong Sun, Leona E. Ling, Emmanuel T. Akporiaye, and Andrew D. Weinberg

Synopsis: Triplett, Tucker, and colleagues show that combination cancer therapy using an OX40 agonist and TGFβ receptor blockade depends in part on STAT3 signaling by OX40-expressing T cells; this combination increases intratumoral CD4 and CD8 T-cell functions, which are dampened in the absence of STAT3 signaling.

Cytomegalovirus-Based Vaccine Expressing a Modified Tumor Antigen Induces Potent Tumor-Specific CD8⁺ T-cell Response and Protects Mice from Melanoma

Zhijuan Qiu, Huakang Huang, Jeremy M. Grenier, Oriana A. Perez, Henry M. Smilorwitz, Barbara Adler, and Kamal M. Khanna

Synopsis: Qiu and colleagues used cytomegalovirus (CMV)-based prophylactic and therapeutic vaccines expressing foreign or modified self-tumor antigens in a B16 lung metastatic melanoma model and show that these vaccines induced protective antitumor CD8⁺ T-cell responses even in the presence of preexisting anti-CMV immunity.

Targeting Interleukin-2 to the Bone Marrow Stroma for Therapy of Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation

Christoph Schliemann, Katriin L. Guthbrodt, Andrea Kerkhoff, Michele Pohnen, Stefanie Wiebe, Gerda Silling, Linus Angenendt, Torsten Kessler, Rolf M. Mesters, Leonardo Giovannoni, Michael Schäfers, Bianca Altavera, Claudia Rossig, Inga Grünewald, Eva Wardelmans, Gabriele Köhler, Dario Neri, Matthias Stelljes, and Wolfgang E. Berdel

Synopsis: Schliemann and colleagues report the use of immunocytokine F16-IL2 in combination with low-dose cytarabine in four patients with relapsed AML after allogeneic hematopoietic stem-cell transplantation; antibody-mediated delivery of IL2 to the AML stroma can activate immune effector cells in the bone marrow of patients.
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Synopsis</th>
</tr>
</thead>
<tbody>
<tr>
<td>557</td>
<td>Systemic Agonistic Anti-CD40 Treatment of Tumor-Bearing Mice Modulates Hepatic Myeloid-Suppressive Cells and Causes Immune-Mediated Liver Damage</td>
<td>José Medina-Echeverz, Chi Ma, Austin G. Duffy, Tobias Eggert, Nga Hawk, David E. Kleiner, Firouzeh Korangy, and Tim F. Greten</td>
<td>Medina-Echeverz and colleagues show that agonistic anti-CD40 activates tumor-induced CD80⁺ and CD40⁺ hepatic myeloid-derived suppressor cells (MDSC), which cause ROS-mediated hepatotoxicity; these results are recapitulated in human CD14⁺ HLA-DRlow MDSCs, which lose arginase expression and suppressor function in vitro.</td>
</tr>
</tbody>
</table>
ABOUT THE MASTER

Vincenzo Cerundolo, MD, PhD, is the director of the United Kingdom Medical Research Council (MRC UK) Human Immunology Unit and professor of immunology at the Weatherall Institute of Molecular Medicine, University of Oxford, UK. In the early 1990s Dr. Cerundolo made key discoveries characterizing the cellular mechanisms involved in the presentation of intracellular peptides to MHC class I–restricted T lymphocytes, which have had a great impact on the field. In particular, he was instrumental in the identification of genes within the MHC locus that are critical for the generation of peptides presented by MHC class I molecules. Dr. Cerundolo described the first human antigen processing-deficient cells, leading to the cloning and characterization of the transporter associated with antigen-processing 1 and 2 (TAP1, TAP2) genes and the identification of several families of TAP1/2-deficient patients with necrotizing granulomatous skin lesions and small vessel vasculitis. He was the first to determine the relationship between the length of peptides and their binding affinity to MHC class I molecules, hence explaining the homogenous length of peptides isolated from MHC class I molecules. He showed the proteasome-dependent processing of defined melanoma antigenic proteins into epitopes for antitumor T cells and thus the direct role of immunoproteasomes in cross-presentation of exogenous proteins.

Dr. Cerundolo demonstrated how the length and saturation of lipid antigens contained within the CD1d binding site modulate their affinity of binding to invariant NKT cells (iNKT cells), hence explaining how lipid-specific lymphocytes are capable of recognizing both the group head and the length of lipid antigens, ensuring greater specificity of antigen recognition. His seminal findings on the processing and presentation of peptide and lipid antigens made fundamental advances to the field of antigen presentation to MHC class I–restricted T cells and CD1d-restricted iNKT cells. His demonstration that iNKT cells enhance both antigen-specific antibody and T-cell responses has had a major influence on the development of new vaccines and has opened up new therapeutic strategies to enhance immune responses against cancer and infectious pathogens.

Dr. Cerundolo was born in Lecce, Italy. He was a graduate in medicine and completed his PhD in immunology at the University of Padua, Italy, where he also received training in clinical and experimental oncology. He moved to the UK as an EMBO Fellow in 1988 to work with Professor Alain Townsend. Dr. Cerundolo was appointed professor of immunology at the University of Oxford in 2000, director of the MRC Human Immunology Unit in 2010, and head of the Investigative Medicine Division of the Radcliffe Department of Medicine in 2012. Dr. Cerundolo enjoys running and is a member of one of the Oxford Road Runner Clubs. He is a fellow of Merton College at the University of Oxford, the Academy of Medical Sciences, UK, and the Royal College of Pathologists, and is the Batsheva Fellow of the Israeli Academy of Medical Sciences. He serves on the scientific advisory boards of numerous institutions and charitable organizations, and on the editorial boards of leading peer-reviewed journals.

Current research in the Cerundolo laboratory focuses on gaining a better understanding of the mechanisms that control the cell–cell interplay required for optimal expansion and activation of tumor-specific T-cell populations, and to apply this knowledge to the development of better treatment strategies in cancer patients.
Updated version
Access the most recent version of this article at:
http://cancerimmunolres.aacrjournals.org/content/3/5

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>